Empirical determination of breed-of-origin of alleles in three-breed cross pigs

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)


Background: Although breeding programs for pigs and poultry aim at improving crossbred performance, they mainly use training populations that consist of purebred animals. For some traits, e.g. residual feed intake, the genetic correlation between purebred and crossbred performance is low and thus including crossbred animals in the training population is required. With crossbred animals, the effects of single nucleotide polymorphisms (SNPs) may be breed-specific because linkage disequilibrium patterns between a SNP and a quantitative trait locus (QTL), and allele frequencies and allele substitution effects of a QTL may differ between breeds. To estimate the breed-specific effects of alleles in a crossbred population, the breed-of-origin of alleles in crossbred animals must be known. This study was aimed at investigating the performance of an approach that assigns breed-of-origin of alleles in real data of three-breed cross pigs. Genotypic data were available for 14,187 purebred, 1354 F1, and 1723 three-breed cross pigs. Results: On average, 93.0 % of the alleles of three-breed cross pigs were assigned a breed-of-origin without using pedigree information and 94.6 % with using pedigree information. The assignment percentage could be improved by allowing a percentage (fr) of the copies of a haplotype to be observed in a purebred population different from the assigned breed-of-origin. Changing fr from 0 to 20 %, increased assignment of breed-of-origin by 0.6 and 0.7 % when pedigree information was and was not used, respectively, which indicates the benefit of setting fr to 20 %. Conclusions: Breed-of-origin of alleles of three-breed cross pigs can be derived empirically without the need for pedigree information, with 93.7 % of the alleles assigned a breed-of-origin. Pedigree information is useful to reduce computation time and can slightly increase the percentage of assignments. Knowledge on the breed-of-origin of alleles allows the use of models that implement breed-specific effects of SNP alleles in genomic prediction, with the aim of improving selection of purebred animals for crossbred offspring performance.

Original languageEnglish
Article number55
Number of pages12
JournalGenetics, Selection, Evolution
Publication statusPublished - 2016

Fingerprint Dive into the research topics of 'Empirical determination of breed-of-origin of alleles in three-breed cross pigs'. Together they form a unique fingerprint.

  • Projects

    Cite this