Abstract
An efficient transformation system for the astaxanthin-producing yeast Phaffia rhodozyma was developed based on electroporation that routinely yields approximately 1000 transformants per g of plasmid DNA. The high transformation efficiency depends on vector integration in the ribosomal DNA (rDNA) and the presence of the homologous glycolytic glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and terminator to drive the expression of the transposon Tn5 encoded kanamycin resistance gene (KmR) as a selective marker. Using this system stable transformants were obtained, carrying multiple plasmid copies. Plasmid copy number could be markedly increased by deletion of the gpd terminator from the transforming plasmid.
Original language | English |
---|---|
Pages (from-to) | 399-405 |
Journal | Biotechnology techniques |
Volume | 12 |
DOIs | |
Publication status | Published - 1998 |