TY - JOUR
T1 - Efficacy of highly bioavailable zinc from fortified water
T2 - A randomized controlled trial in rural Beninese children
AU - Galetti, Valeria
AU - Kujinga, Prosper
AU - Mitchikpè, C.E.S.
AU - Zeder, Christophe
AU - Tay, Fabian
AU - Tossou, Félicien
AU - Hounhouigan, Joseph D.
AU - Zimmermann, Michael B.
AU - Moretti, Diego
PY - 2015
Y1 - 2015
N2 - Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device configured with glass zinc plates to produce zinc-fortified, potable water. Objective: The objective was to determine zinc bioavailability from filtered water and the efficacy of zinc-fortified water in improving zinc status. Design: In a crossover balanced study, we measured fractional zinc absorption (FAZ) from the zinc-fortified water in 18 healthy Swiss adults using zinc stable isotopes and compared it with zinc-fortified maize porridge. We conducted a 20-wk double-blind randomized controlled trial (RCT) in 277 Beninese school children from rural settings who were randomly assigned to receive a daily portion of zinc-fortified filtered water delivering 2.8 mg Zn (Zn+filter), nonfortified filtered water (Filter), or nonfortified nonfiltered water (Pump) from the local improved supply, acting as the control group. The main outcome was plasma zinc concentration (PZn), and the 3 groups were compared by using mixed-effects models. Secondary outcomes were prevalence of zinc deficiency, diarrhea prevalence, and growth. Results: Geometric mean (2SD, +SD) FAZ was 7-fold higher from fortified water (65.9%; 42.2, 102.4) than from fortified maize (9.1%; 6.0, 13.7; P <0.001). In the RCT, a significant time-by-treatment effect on PZn (P = 0.026) and on zinc deficiency (P = 0.032) was found; PZn in the Zn+filter group was significantly higher than in the Filter (P = 0.006) and Pump (P = 0.025) groups. We detected no effect on diarrhea or growth, but our study did not have the duration and power to detect such effects. Conclusions: Consumption of filtered water fortified with a low dose of highly bioavailable zinc is an effective intervention in children from rural African settings. Large community-based trials are needed to assess the effectiveness of zinc-fortified filtered water on diarrhea and growth. These trials were registered at clinicaltrials.gov as NCT01636583 and NCT01790321.
AB - Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device configured with glass zinc plates to produce zinc-fortified, potable water. Objective: The objective was to determine zinc bioavailability from filtered water and the efficacy of zinc-fortified water in improving zinc status. Design: In a crossover balanced study, we measured fractional zinc absorption (FAZ) from the zinc-fortified water in 18 healthy Swiss adults using zinc stable isotopes and compared it with zinc-fortified maize porridge. We conducted a 20-wk double-blind randomized controlled trial (RCT) in 277 Beninese school children from rural settings who were randomly assigned to receive a daily portion of zinc-fortified filtered water delivering 2.8 mg Zn (Zn+filter), nonfortified filtered water (Filter), or nonfortified nonfiltered water (Pump) from the local improved supply, acting as the control group. The main outcome was plasma zinc concentration (PZn), and the 3 groups were compared by using mixed-effects models. Secondary outcomes were prevalence of zinc deficiency, diarrhea prevalence, and growth. Results: Geometric mean (2SD, +SD) FAZ was 7-fold higher from fortified water (65.9%; 42.2, 102.4) than from fortified maize (9.1%; 6.0, 13.7; P <0.001). In the RCT, a significant time-by-treatment effect on PZn (P = 0.026) and on zinc deficiency (P = 0.032) was found; PZn in the Zn+filter group was significantly higher than in the Filter (P = 0.006) and Pump (P = 0.025) groups. We detected no effect on diarrhea or growth, but our study did not have the duration and power to detect such effects. Conclusions: Consumption of filtered water fortified with a low dose of highly bioavailable zinc is an effective intervention in children from rural African settings. Large community-based trials are needed to assess the effectiveness of zinc-fortified filtered water on diarrhea and growth. These trials were registered at clinicaltrials.gov as NCT01636583 and NCT01790321.
KW - Benin
KW - School-age children
KW - Water fortification
KW - Zinc absorption
KW - Zinc fortification
U2 - 10.3945/ajcn.115.117028
DO - 10.3945/ajcn.115.117028
M3 - Article
C2 - 26468121
AN - SCOPUS:84946016135
SN - 0002-9165
VL - 102
SP - 1238
EP - 1248
JO - American Journal of Clinical Nutrition
JF - American Journal of Clinical Nutrition
IS - 5
ER -