Effects of Specific Multi-Nutrient Enriched Diets on Cerebral Metabolism, Cognition and Neuropathology in AβPPswe-PS1dE9 Mice

Diane Jansen, Valerio Zerbi, Ilse A.C. Arnoldussen, Maximilian Wiesmann, Anne Rijpma, Xiaotian T. Fang, Pieter J. Dederen, Martina P.C. Mutsaers, Laus M. Broersen, Dieter Lütjohann, Malgorzata Miller, Leo A.B. Joosten, Arend Heerschap, Amanda J. Kiliaan

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)

Abstract

Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological disorders.

Original languageEnglish
Article numbere75393
JournalPLoS ONE
Volume8
Issue number9
DOIs
Publication statusPublished - 24 Sep 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Effects of Specific Multi-Nutrient Enriched Diets on Cerebral Metabolism, Cognition and Neuropathology in AβPPswe-PS1dE9 Mice'. Together they form a unique fingerprint.

Cite this