TY - JOUR
T1 - Effects of oil-water interfacial properties on protein structuring and droplet deformation in high moisture meat analogues containing oil
AU - Ikenaga, Naoya
AU - Hashimoto, Shuzo
AU - Sagis, Leonard M.C.
PY - 2025/2
Y1 - 2025/2
N2 - Adding oil to high moisture meat analogues (HMMA) can increase juiciness, and can be achieved by incorporating emulsion droplets during extrusion. Since these droplets can coalesce when subjected to high shear, selecting appropriate emulsion stabilisers is important. For several commercial plant-protein emulsion stabilisers, it was investigated how oil-water interfacial mechanical properties affect droplet deformation and protein structuring in extrusion of HMMAs. Emulsions with 10 wt% or 15 wt% oil, stabilised by potato protein isolates (POPI-1 (Rich in patatin) and POPI-2 (rich in protease inhibitor)) and pea protein isolate PPI, were used to make extrudates with 5.7 wt% and 8.5 wt% oil, respectively. In 8.5 wt%-extrudates, POPI-2 had the most oil leakage from the cooling die, while PPI had the smallest amount despite having softer and more stretchable interfaces. Blade-cutting tests showed the highest maximum force for 8.5 wt%-extrudates with POPI-1, likely because POPI-1 formed the stiffest interfaces. Tensile stress testing showed the largest fracture strain in 8.5% wt%-extrudates with PPI, corresponding to its longer wedge length. Multiphoton excitation microscopy was used to visualise the extrudates protein structure and oil droplets. This showed that droplets near the surface of the extrudate were less deformed than droplets in the centre. There were only small differences between protein stabilisers regarding oil droplet deformation, indicating droplet deformation was dominated by deformation of the protein matrix. The O/W interfacial properties significantly affected oil leakage, cutting force, and tensile strength of extrudates. These results are important to consider when designing emulsions for HMMAs processed by extruders.
AB - Adding oil to high moisture meat analogues (HMMA) can increase juiciness, and can be achieved by incorporating emulsion droplets during extrusion. Since these droplets can coalesce when subjected to high shear, selecting appropriate emulsion stabilisers is important. For several commercial plant-protein emulsion stabilisers, it was investigated how oil-water interfacial mechanical properties affect droplet deformation and protein structuring in extrusion of HMMAs. Emulsions with 10 wt% or 15 wt% oil, stabilised by potato protein isolates (POPI-1 (Rich in patatin) and POPI-2 (rich in protease inhibitor)) and pea protein isolate PPI, were used to make extrudates with 5.7 wt% and 8.5 wt% oil, respectively. In 8.5 wt%-extrudates, POPI-2 had the most oil leakage from the cooling die, while PPI had the smallest amount despite having softer and more stretchable interfaces. Blade-cutting tests showed the highest maximum force for 8.5 wt%-extrudates with POPI-1, likely because POPI-1 formed the stiffest interfaces. Tensile stress testing showed the largest fracture strain in 8.5% wt%-extrudates with PPI, corresponding to its longer wedge length. Multiphoton excitation microscopy was used to visualise the extrudates protein structure and oil droplets. This showed that droplets near the surface of the extrudate were less deformed than droplets in the centre. There were only small differences between protein stabilisers regarding oil droplet deformation, indicating droplet deformation was dominated by deformation of the protein matrix. The O/W interfacial properties significantly affected oil leakage, cutting force, and tensile strength of extrudates. These results are important to consider when designing emulsions for HMMAs processed by extruders.
KW - Emulsion stability
KW - Extrusion
KW - Meat analogue
KW - Oil droplet deformation
KW - Pea protein
KW - Potato protein
U2 - 10.1016/j.jfoodeng.2024.112353
DO - 10.1016/j.jfoodeng.2024.112353
M3 - Article
AN - SCOPUS:85206205420
SN - 0260-8774
VL - 387
JO - Journal of Food Engineering
JF - Journal of Food Engineering
M1 - 112353
ER -