TY - JOUR
T1 - Effects of natural organic matter with different properties on levofloxacin adsorption to goethite
T2 - Experiments and modeling
AU - Qin, Xiaopeng
AU - Du, Ping
AU - Chen, Juan
AU - Liu, Fei
AU - Wang, Guangcai
AU - Weng, Liping
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Adsorption of levofloxacin (LEV) to goethite in the pH range of 3–10, and in the absence or presence of natural organic matter (NOM) represented by nine types of humic acid (HA) and fulvic acid (FA), was studied using batch experiments. The adsorption of LEV to goethite was weak and showed a maximum around pH 5.8. Adding NOM to goethite strongly increased LEV adsorption to goethite, but hardly affected its pH dependency. The adsorption envelopes were well fitted to a linear additive model, in which LEV adsorption to goethite was simulated with the Charge Distribution Multi-Site Complexation (CD-MUSIC) model, and LEV adsorption to NOM was simulated with the Langmuir model. The fitted affinity constants (log K) for LEV adsorption to NOM were significantly and positively correlated with the SUVA (specific ultraviolet absorbance at 280 nm) values of NOM, and negatively correlated with E2/E3 (absorbance ratio at 250 nm and 365 nm) values, carboxyl contents, and the polarity of NOM. The results indicated that aromatic moieties of NOM play a key role in the interactions between LEV and NOM, and hydrophobic interactions and π-π interactions were the major mechanisms for LEV adsorption to NOM, whereas H-bond or surface complexation might not play an important role. Results show that both the concentrations and properties of NOM have a significant effect on the distribution or treatment of antibiotics in soils and waters, which will eventually affect the influence of antibiotics on microorganisms in the environmental systems.
AB - Adsorption of levofloxacin (LEV) to goethite in the pH range of 3–10, and in the absence or presence of natural organic matter (NOM) represented by nine types of humic acid (HA) and fulvic acid (FA), was studied using batch experiments. The adsorption of LEV to goethite was weak and showed a maximum around pH 5.8. Adding NOM to goethite strongly increased LEV adsorption to goethite, but hardly affected its pH dependency. The adsorption envelopes were well fitted to a linear additive model, in which LEV adsorption to goethite was simulated with the Charge Distribution Multi-Site Complexation (CD-MUSIC) model, and LEV adsorption to NOM was simulated with the Langmuir model. The fitted affinity constants (log K) for LEV adsorption to NOM were significantly and positively correlated with the SUVA (specific ultraviolet absorbance at 280 nm) values of NOM, and negatively correlated with E2/E3 (absorbance ratio at 250 nm and 365 nm) values, carboxyl contents, and the polarity of NOM. The results indicated that aromatic moieties of NOM play a key role in the interactions between LEV and NOM, and hydrophobic interactions and π-π interactions were the major mechanisms for LEV adsorption to NOM, whereas H-bond or surface complexation might not play an important role. Results show that both the concentrations and properties of NOM have a significant effect on the distribution or treatment of antibiotics in soils and waters, which will eventually affect the influence of antibiotics on microorganisms in the environmental systems.
KW - Fluoroquinolone
KW - Fulvic acid
KW - Goethite
KW - Humic acid
KW - Hydrophobic interactions
KW - Specific ultraviolet absorbance
U2 - 10.1016/j.cej.2018.03.125
DO - 10.1016/j.cej.2018.03.125
M3 - Article
AN - SCOPUS:85044756526
SN - 1385-8947
VL - 345
SP - 425
EP - 431
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
ER -