Effects of long-term super absorbent polymer and organic manure on soil structure and organic carbon distribution in different soil layers

Yonghui Yang*, Jicheng Wu, Shiwei Zhao, Cuimin Gao, Xiaoying Pan, Darrell W.S. Tang, Martine van der Ploeg

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Super absorbent polymer (SAP) and organic manure (OM) may improve soil structure and change soil organic carbon (SOC) composition and agroecosystem functioning. However, the understanding of the effects of SAP and OM on SOC composition, specifically in deeper soil layers, is still not clear. The objectives of this study were to examine the effects of long-term application of SAP and OM (8 years) on changes in SOC and soil structure down to a soil depth of 100 cm. Therefore, in order to investigate the stability of soil structure and the distribution of organic carbon at different soil depths (0-10 cm, 10-20 cm,…, 90-100 cm) under long-term application of SAP, OM, and a control treatment, soil structure and soil organic carbon content were analyzed in mixed soil samples and undisturbed soil samples. The results indicated that with depth, the proportion of large aggregates (0.5-2.0 mm) decreased gradually, while the proportion of small aggregates (<0.25 mm) increased gradually. Compared with the control, SAP treatment was conducive to the increment of>0.5 mm soil aggregates in the 0-30 cm and 40-60 cm soil layers (P < 0.05) and 0.25-0.5 mm in the 0-50 cm soil layer (P < 0.05), and while the OM treatment had the same effect in the 0-30 cm soil layer (P < 0.05). The total organic carbon content (TOC) and labile organic carbon content (LOC) of bulk soil increased (0-20 cm) initially with depth, and then decreased (20-70 cm) approximately. In the 0-50 cm soil layer, the TOC and LOC under SAP treatment were higher than those under OM treatment. The SAP treatment was more beneficial to the increase of the TOC and LOC of 0.5-2.0 mm and 0.25-0.5 mm aggregates in the 10-40 cm soil layer compared with the control and OM treatment (P < 0.05). The SAP treatment was also more beneficial in increasing the contribution rate of organic carbon (CROC) in> 0.5 mm aggregates in 0-40 cm soil depth, while the OM treatment was more beneficial in increasing the CROC of > 0.5 mm aggregates in 0-30 cm soil depth. The SAP treatment improved the stability of the soil structure in 0-30 cm and 40-60 cm depths, and the OM treatment had the same effect in the 0-30 cm depth. Compared with the control and OM treatments, SAP treatment has shown to be the most beneficial in improving soil structure and increasing organic carbon content.

Original languageEnglish
Article number104781
JournalSoil and Tillage Research
Volume206
Early online date10 Oct 2020
DOIs
Publication statusE-pub ahead of print - 10 Oct 2020

Keywords

  • Contribution rate of organic carbon
  • Organic manure
  • Soil organic carbon
  • Soil structure
  • Super absorbent polymer

Fingerprint Dive into the research topics of 'Effects of long-term super absorbent polymer and organic manure on soil structure and organic carbon distribution in different soil layers'. Together they form a unique fingerprint.

Cite this