Effects of diet composition and ultrasound treatment on particle size distribution and carbon bioavailability in feces of rainbow trout

A. Meriac, T. van Tilburg, E.H. Eding, A. Kamstra, J.W. Schrama, J.A.J. Verreth

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

The effect of a high and low non-starch polysaccharide diet (HNSP and LNSP diet) and ultrasound treatment on particle size distribution and carbon bioavailability in fecal waste of rainbow trout (Oncorynchus mykiss) was studied. Feces were collected from four flow-through fish tanks, two tanks fed the HNSP diet and two the LNSP diet. The collected feces were sonicated (disintegrated) in duplicate with high-intensity (0.6 W/ml), low-frequency (f = 20 Hz) ultrasound at five different energy levels (0.6 W/ml for 0, 0.25, 1, 4, and 16 min). The particle size distribution of the treated feces samples was measured by wet sieving (1000, 500, 200, 100, 63, 36, 1.2 µm screen size) and total suspended solids (TSS) measurement. Carbon bioavailability in sonicated fecal waste samples was determined with oxygen uptake rate (OUR) tests. The results showed that: (1) feces from the HNSP diet contained significant more particulate material and bigger particles; (2) carbon bioavailability was almost three times higher in untreated LNSP feces when compared with HNSP feces; (3) almost 50% of HNSP feces could have been recovered on a microscreen of 36 µm after wet sieving, whereas it was only 10% for LNSP feces; (4) the production of small particles (1.2–36 µm), which could pass a drum filter screen and potentially accumulate in RAS, was approximately 50 g/kg feed, showing no significant differences between diets; (5) sonication increased fecal dry matter below 36 µm (p = 0.015), but it had no significant effect on the median particle size; (6) sonication increased carbon bioavailability with 7–10% for the HNSP feces (p = 0.037); (7) fecal particles withstood up to 16 min sonication at an intensity of 0.6 W/ml and a frequency of 20 Hz corresponding to specific energy input of 20,000 kJ/kg DM without major changes in particle size distribution. The results of this study indicate that the applied ultrasound treatment of fecal waste is not an effective method to increase short-term carbon bioavailability.
Original languageEnglish
Pages (from-to)10-16
JournalAquacultural Engineering
Volume65
DOIs
Publication statusPublished - 2015

Fingerprint

particle size distribution
feces
bioavailability
rainbow
Oncorhynchus mykiss
particle size
diet
carbon
sieving
drums (equipment)
ultrasound
effect
aquaculture tanks
specific energy
total suspended solids
filters
polysaccharide
energy
dry matter
particulates

Keywords

  • recirculating aquaculture systems
  • activated-sludge
  • anaerobic-digestion
  • waste-water
  • feed
  • fish
  • denitrification
  • digestibility
  • pretreatment
  • sonication

Cite this

@article{846a68d126114a70b07a0bebd6555eba,
title = "Effects of diet composition and ultrasound treatment on particle size distribution and carbon bioavailability in feces of rainbow trout",
abstract = "The effect of a high and low non-starch polysaccharide diet (HNSP and LNSP diet) and ultrasound treatment on particle size distribution and carbon bioavailability in fecal waste of rainbow trout (Oncorynchus mykiss) was studied. Feces were collected from four flow-through fish tanks, two tanks fed the HNSP diet and two the LNSP diet. The collected feces were sonicated (disintegrated) in duplicate with high-intensity (0.6 W/ml), low-frequency (f = 20 Hz) ultrasound at five different energy levels (0.6 W/ml for 0, 0.25, 1, 4, and 16 min). The particle size distribution of the treated feces samples was measured by wet sieving (1000, 500, 200, 100, 63, 36, 1.2 µm screen size) and total suspended solids (TSS) measurement. Carbon bioavailability in sonicated fecal waste samples was determined with oxygen uptake rate (OUR) tests. The results showed that: (1) feces from the HNSP diet contained significant more particulate material and bigger particles; (2) carbon bioavailability was almost three times higher in untreated LNSP feces when compared with HNSP feces; (3) almost 50{\%} of HNSP feces could have been recovered on a microscreen of 36 µm after wet sieving, whereas it was only 10{\%} for LNSP feces; (4) the production of small particles (1.2–36 µm), which could pass a drum filter screen and potentially accumulate in RAS, was approximately 50 g/kg feed, showing no significant differences between diets; (5) sonication increased fecal dry matter below 36 µm (p = 0.015), but it had no significant effect on the median particle size; (6) sonication increased carbon bioavailability with 7–10{\%} for the HNSP feces (p = 0.037); (7) fecal particles withstood up to 16 min sonication at an intensity of 0.6 W/ml and a frequency of 20 Hz corresponding to specific energy input of 20,000 kJ/kg DM without major changes in particle size distribution. The results of this study indicate that the applied ultrasound treatment of fecal waste is not an effective method to increase short-term carbon bioavailability.",
keywords = "recirculating aquaculture systems, activated-sludge, anaerobic-digestion, waste-water, feed, fish, denitrification, digestibility, pretreatment, sonication",
author = "A. Meriac and {van Tilburg}, T. and E.H. Eding and A. Kamstra and J.W. Schrama and J.A.J. Verreth",
year = "2015",
doi = "10.1016/j.aquaeng.2014.12.002",
language = "English",
volume = "65",
pages = "10--16",
journal = "Aquacultural Engineering",
issn = "0144-8609",
publisher = "Elsevier",

}

Effects of diet composition and ultrasound treatment on particle size distribution and carbon bioavailability in feces of rainbow trout. / Meriac, A.; van Tilburg, T.; Eding, E.H.; Kamstra, A.; Schrama, J.W.; Verreth, J.A.J.

In: Aquacultural Engineering, Vol. 65, 2015, p. 10-16.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Effects of diet composition and ultrasound treatment on particle size distribution and carbon bioavailability in feces of rainbow trout

AU - Meriac, A.

AU - van Tilburg, T.

AU - Eding, E.H.

AU - Kamstra, A.

AU - Schrama, J.W.

AU - Verreth, J.A.J.

PY - 2015

Y1 - 2015

N2 - The effect of a high and low non-starch polysaccharide diet (HNSP and LNSP diet) and ultrasound treatment on particle size distribution and carbon bioavailability in fecal waste of rainbow trout (Oncorynchus mykiss) was studied. Feces were collected from four flow-through fish tanks, two tanks fed the HNSP diet and two the LNSP diet. The collected feces were sonicated (disintegrated) in duplicate with high-intensity (0.6 W/ml), low-frequency (f = 20 Hz) ultrasound at five different energy levels (0.6 W/ml for 0, 0.25, 1, 4, and 16 min). The particle size distribution of the treated feces samples was measured by wet sieving (1000, 500, 200, 100, 63, 36, 1.2 µm screen size) and total suspended solids (TSS) measurement. Carbon bioavailability in sonicated fecal waste samples was determined with oxygen uptake rate (OUR) tests. The results showed that: (1) feces from the HNSP diet contained significant more particulate material and bigger particles; (2) carbon bioavailability was almost three times higher in untreated LNSP feces when compared with HNSP feces; (3) almost 50% of HNSP feces could have been recovered on a microscreen of 36 µm after wet sieving, whereas it was only 10% for LNSP feces; (4) the production of small particles (1.2–36 µm), which could pass a drum filter screen and potentially accumulate in RAS, was approximately 50 g/kg feed, showing no significant differences between diets; (5) sonication increased fecal dry matter below 36 µm (p = 0.015), but it had no significant effect on the median particle size; (6) sonication increased carbon bioavailability with 7–10% for the HNSP feces (p = 0.037); (7) fecal particles withstood up to 16 min sonication at an intensity of 0.6 W/ml and a frequency of 20 Hz corresponding to specific energy input of 20,000 kJ/kg DM without major changes in particle size distribution. The results of this study indicate that the applied ultrasound treatment of fecal waste is not an effective method to increase short-term carbon bioavailability.

AB - The effect of a high and low non-starch polysaccharide diet (HNSP and LNSP diet) and ultrasound treatment on particle size distribution and carbon bioavailability in fecal waste of rainbow trout (Oncorynchus mykiss) was studied. Feces were collected from four flow-through fish tanks, two tanks fed the HNSP diet and two the LNSP diet. The collected feces were sonicated (disintegrated) in duplicate with high-intensity (0.6 W/ml), low-frequency (f = 20 Hz) ultrasound at five different energy levels (0.6 W/ml for 0, 0.25, 1, 4, and 16 min). The particle size distribution of the treated feces samples was measured by wet sieving (1000, 500, 200, 100, 63, 36, 1.2 µm screen size) and total suspended solids (TSS) measurement. Carbon bioavailability in sonicated fecal waste samples was determined with oxygen uptake rate (OUR) tests. The results showed that: (1) feces from the HNSP diet contained significant more particulate material and bigger particles; (2) carbon bioavailability was almost three times higher in untreated LNSP feces when compared with HNSP feces; (3) almost 50% of HNSP feces could have been recovered on a microscreen of 36 µm after wet sieving, whereas it was only 10% for LNSP feces; (4) the production of small particles (1.2–36 µm), which could pass a drum filter screen and potentially accumulate in RAS, was approximately 50 g/kg feed, showing no significant differences between diets; (5) sonication increased fecal dry matter below 36 µm (p = 0.015), but it had no significant effect on the median particle size; (6) sonication increased carbon bioavailability with 7–10% for the HNSP feces (p = 0.037); (7) fecal particles withstood up to 16 min sonication at an intensity of 0.6 W/ml and a frequency of 20 Hz corresponding to specific energy input of 20,000 kJ/kg DM without major changes in particle size distribution. The results of this study indicate that the applied ultrasound treatment of fecal waste is not an effective method to increase short-term carbon bioavailability.

KW - recirculating aquaculture systems

KW - activated-sludge

KW - anaerobic-digestion

KW - waste-water

KW - feed

KW - fish

KW - denitrification

KW - digestibility

KW - pretreatment

KW - sonication

U2 - 10.1016/j.aquaeng.2014.12.002

DO - 10.1016/j.aquaeng.2014.12.002

M3 - Article

VL - 65

SP - 10

EP - 16

JO - Aquacultural Engineering

JF - Aquacultural Engineering

SN - 0144-8609

ER -