Abstract
The effect of the C0 2 concentration of the greenhouse air (C) in the range 200 to 1100 μmol mol -1was investigated in tomato ( Lycopersicon esculentum Mill.), cucumber ( Cucumis sativus L.), sweet pepper ( Capsicum annuum L.) and eggplant ( Solanum melongena L.), grown in greenhouses.
The effect of C on canopy net photosynthetic C0 2 assimilation rate (or photosynthesis, P) was expressed by a set of regression equations, relating P to PAR, C and LAI. A rule of thumb ('CO 2 -rule') was derived, approximating the relative increase of P caused by additional C0 2 at a certain C. This C0 2 -rule is: X = (1000/C) 2* 1.5 (X in % per 100 μmol mol -1, and C in μmol mol -1). Two models for canopy photosynthesis were examined by comparing them with the experimental photosynthesis data. No 'midday depression' in P was observed.
The effects of C on leaf conductance ( g ) and on rate of crop transpiration ( E ) were investigated. An increase of 100 μmol mol -1in C reduced g by about 3-4% in sweet pepper, tomato and cucumber and by about 11 % in eggplant. The effect of C on E was analyzed by combining the regression equation for g with the Penman-Monteith equation for E . C had only a relatively small effect on E , owing to thermal and hydrological feedback effects. The decoupling of g and E was quantified. No timedependent variation or 'midday depression' in E was observed, and no significant effect of C on average leaf temperature was established.
In five experiments, the effect of C on growth and production and on specific features were analyzed: light use efficiency was increased by about 10 to 15% per 100 μmol mol -1increase in C; fruit set of sweet pepper was greatly increased by high C; allocation of biomass to fruits was increased by high C in sweet pepper and cucumber; specific leaf area (SLA) was reduced by 15 to 20% at 150 to 250 μmol mol -1increase in C (except in cucumber); dry matter content (DMC) of vegetative organs slightly increased at high C (also not in cucumber); fruit production (dry weight) was most affected by C in sweet pepper; fresh weight fruit production per unit CO 2 was highest in cucumber; fruit quality was not influenced by C. High C promoted the 'short leaves syndrome' in tomato and 'leaf tip chlorosis' in eggplant, probably related to calcium and boron translocation, respectively. The observed effect of C on production was larger than expected on the basis of the CO 2 -rule. Intermittent CO 2 supply (ICS) could under normal ventilation accomplish only a limited increase in average C, and hence a limited increase in production. No physiological advantages of ICS were revealed.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution | |
Supervisors/Advisors |
|
Award date | 25 Oct 1994 |
Place of Publication | S.l. |
Publisher | |
Print ISBNs | 9789054853183 |
Publication status | Published - 1994 |
Keywords
- metabolism
- plant nutrition
- assimilation
- photosynthesis
- transpiration
- evapotranspiration
- carbon dioxide
- fruit vegetables
- vegetables
- greenhouse horticulture