TY - JOUR
T1 - Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed
AU - Bayabil, Haimanote K.
AU - Tebebu, Tigist Y.
AU - Stoof, Cathelijne R.
AU - Steenhuis, Tammo S.
PY - 2016
Y1 - 2016
N2 - Placement and hence performance of many soil and water conservation structures in tropical highlands has proven to be challenging due to uncertainty of the actual location of runoff-generating areas in the landscape. This is the case especially in the (sub-)humid areas of the Ethiopian highlands, resulting in limited success of such conservation measures. To improve understanding of the effect of land use on spatial and temporal runoff patterns in the Ethiopian highlands, we monitored runoff volumes from 24 runoff plots constructed in the 113 ha Anjeni watershed, where historical data of rainfall and stream discharge were available. In addition, we assessed the effectiveness of charcoal amendment of the soil and crop rooting depth in reducing runoff, and we compared the effect of lupine (a deep-rooted crop) to that of barley. We also measured daily rainfall, surface runoff, and root zone moisture contents during the monsoon seasons of 2012 and 2013 (with all plots being tilled in 2012, but only barley plots tilled in 2013). In addition, we analyzed long-term surface runoff from four plots, and outlet discharge data from the research site (1989-1993) were analyzed and compared with our observations. Results showed that the degrees of soil degradation and soil disturbance (tillage) were significant factors affecting plot-scale runoff responses. As expected, runoff was greater from more degraded soils. Overall, under the commonly applied lupine cropping practice, runoff was higher than under the commonly applied barley cropping practice. In particular, considerable difference was observed during smaller rainfall events (approximately <20 mm) in 2013, when lupine plots (non-tilled) had greater runoff than barley plots (tilled). Charcoal tended to decrease runoff, but results were not significant.
AB - Placement and hence performance of many soil and water conservation structures in tropical highlands has proven to be challenging due to uncertainty of the actual location of runoff-generating areas in the landscape. This is the case especially in the (sub-)humid areas of the Ethiopian highlands, resulting in limited success of such conservation measures. To improve understanding of the effect of land use on spatial and temporal runoff patterns in the Ethiopian highlands, we monitored runoff volumes from 24 runoff plots constructed in the 113 ha Anjeni watershed, where historical data of rainfall and stream discharge were available. In addition, we assessed the effectiveness of charcoal amendment of the soil and crop rooting depth in reducing runoff, and we compared the effect of lupine (a deep-rooted crop) to that of barley. We also measured daily rainfall, surface runoff, and root zone moisture contents during the monsoon seasons of 2012 and 2013 (with all plots being tilled in 2012, but only barley plots tilled in 2013). In addition, we analyzed long-term surface runoff from four plots, and outlet discharge data from the research site (1989-1993) were analyzed and compared with our observations. Results showed that the degrees of soil degradation and soil disturbance (tillage) were significant factors affecting plot-scale runoff responses. As expected, runoff was greater from more degraded soils. Overall, under the commonly applied lupine cropping practice, runoff was higher than under the commonly applied barley cropping practice. In particular, considerable difference was observed during smaller rainfall events (approximately <20 mm) in 2013, when lupine plots (non-tilled) had greater runoff than barley plots (tilled). Charcoal tended to decrease runoff, but results were not significant.
U2 - 10.5194/hess-20-875-2016
DO - 10.5194/hess-20-875-2016
M3 - Article
AN - SCOPUS:84959377982
VL - 20
SP - 875
EP - 885
JO - Hydrology and Earth System Sciences
JF - Hydrology and Earth System Sciences
SN - 1027-5606
ER -