Effect of dissolved natural organic matter on the photocatalytic micropollutant removal performance of TiO2 nanotube array

Yin Ye*, Harry Bruning, Wanrong Liu, Huub Rijnaarts, Doekle Yntema

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

41 Citations (Scopus)

Abstract

The TiO2 nanotube array (TNA) is a promising photocatalyst for removal of micropollutants from water, but better understanding on its applicability in complex water matrices is still desired. Therefore this study investigates the effect of dissolved natural organic matter (NOMs) on 4-chloro-2-methylphenoxyacetic acid (MCPA, a typical micropollutant found in many water bodies) removal performance of TNA. The present study shows that although in bulk liquid phase NOMs would undergo photosensitization that can contribute to MCPA removal, the overall effect of NOMs on MCPA removal is detrimental due to the interaction between NOMs and the TNA surface: the total removal of MCPA decreased from 94.3% to 62.0% and 61.8%, in the presence of only 5 mg/L SWR-NOM and UMR-NOM respectively. Acidic pH was found to be able to mitigate the detrimental effect of NOMs (the total removal of MCPA was only decreased from 94.5% to 83.3% and 88.8% under acidic pH, in the presence of 15 mg/L SWR-NOM and UMR-NOM respectively), and the photosensitization effect of NOMs was strengthened; while under alkaline pH conditions the detrimental effect of NOMs completely vanished (the total removal of MCPA increased from 45.7% to 55.7% and 60.5% in the presence of 15 mg/L SWR-NOM and UMR-NOM respectively). Two commonly present co-existing anions, i.e. phosphate and bicarbonate, also mitigate the detrimental effect of NOMs. With 15 mg/L SWR-NOM: the presence of 100 mg/L bicarbonate increased the total removal of MCPA from 49.1% to 65.1%; the presence of 100 mg/L phosphate increased the total removal of MCPA from 49.1% to 62.5%. With 15 mg/L SWR-NOM, the presence of 100 mg/L bicarbonate increased the total removal of MCPA from 45.2% to 56.1%; the presence of 100 mg/L phosphate increased the total removal of MCPA from 45.2% to 62.9%. The photocurrent measurement support that the presence of such anions greatly suppresses the h + scavenging effect of NOMs; while other anions, i.e. chloride, nitrate, sulfate, showed no notable effect.

Original languageEnglish
Pages (from-to)216-222
JournalJournal of Photochemistry and Photobiology A: Chemistry
Volume371
DOIs
Publication statusPublished - 15 Feb 2019

Keywords

  • MCPA
  • Micropollutant
  • Natural organic matter
  • Photocatalysis
  • TiO nanotube array

Fingerprint

Dive into the research topics of 'Effect of dissolved natural organic matter on the photocatalytic micropollutant removal performance of TiO2 nanotube array'. Together they form a unique fingerprint.

Cite this