Ecological multiplex interactions determine the role of species for parasite spread amplification

Massimo Stella, Sanja Selaković, Alberto Antonioni, Cecilia S. Andreazzi*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)

Abstract

Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As a unifying framework for understanding parasite spread through interdependent transmission paths, we present the ‘ecomultiplex’ model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for Trypanosoma cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems.

Original languageEnglish
Article numbere32814
JournaleLife
Volume7
DOIs
Publication statusPublished - 23 Apr 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Ecological multiplex interactions determine the role of species for parasite spread amplification'. Together they form a unique fingerprint.

Cite this