Early-life fecal microbiome and metabolome dynamics in response to an intervention with infant formula containing specific prebiotics and postbiotics

Alfonso Rodriguez-Herrera, Sebastian Tims*, Jan Polman, Rocío Porcel Rubio, Antonio Muñoz Hoyos, Massimo Agosti, Gianluca Lista, Luigi T. Corvaglia, Jan Knol, Guus Roeselers, Juan L. Pérez Navero

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

This study examined fecal metabolome dynamics to gain greater functional insights into the interactions between nutrition and the activity of the developing gut microbiota in healthy term-born infants. The fecal samples used here originate from a randomized, controlled, double-blind clinical study that assessed the efficacy of infant formula with prebiotics and postbiotics (experimental arm) compared with a standard infant formula (control arm). A group of exclusively breast-fed term infants was used as a reference arm. First, conventional targeted physiological and microbial measurements were performed, which showed differences in fecal Bifidobacterium levels and corresponding activity (e.g., lactate levels). Next, the overall fecal microbiota composition was determined by 16S rRNA gene amplicon sequencing. The microbiota composition profiles showed several bacterial groups in the experimental arm to be significantly different from the control arm and mostly closer to the levels observed in the reference arm. Finally, we applied an untargeted UPLC-MS/MS approach to examine changes in the fecal metabolome. Fecal metabolome profiles showed the most distinct separation, up to 404 significantly different metabolites, between the study arms. Our data reveal that infant formula with specific prebiotics and postbiotics may trigger responses in the intestinal microbiota composition that brings the ensuing fecal metabolite profile of formula-fed infants closer toward those observed in breast-fed infants. Furthermore, our results demonstrate a clear need for establishing an infant gut metabolome reference database to translate these metabolite profile dynamics into functional and physiologically relevant responses.NEW & NOTEWORTHY Untargeted metabolomics techniques can provide a "snapshot" of an ecosystem in response to environmental stimuli, such as nutritional interventions. Our analyses of fecal samples from infants demonstrate the potential of phenotyping by metabolomics while deciphering the complex interactions of early-life nutrition and gut microbiome development.

Original languageEnglish
Pages (from-to)G571-G582
JournalAmerican Journal of Physiology. Gastrointestinal and Liver Physiology
Volume322
Issue number6
DOIs
Publication statusPublished - 1 Jun 2022

Keywords

  • early life
  • gut microbiota
  • infant formula
  • metabolomics

Fingerprint

Dive into the research topics of 'Early-life fecal microbiome and metabolome dynamics in response to an intervention with infant formula containing specific prebiotics and postbiotics'. Together they form a unique fingerprint.

Cite this