TY - JOUR
T1 - Dysregulated signaling, proliferation and apoptosis impact on the pathogenesis of TCRγδ+ T cell large granular lymphocyte leukemia
AU - Kallemeijn, Martine J.
AU - de Ridder, Dick
AU - Schilperoord-Vermeulen, Joyce
AU - van der Klift, Michèle Y.
AU - Sandberg, Yorick
AU - van Dongen, Jacques J.M.
AU - Langerak, Anton W.
PY - 2017
Y1 - 2017
N2 - TCRγδ+ T-LGL leukemia is a rare form of chronic mature T cell disorders in elderly, which is generally characterized by a persistently enlarged CD3+CD57+TCRγδ+ large granular lymphocyte population in the peripheral blood with a monoclonal phenotype. Clinically, the disease is heterogeneous, most patients being largely asymptomatic, although neutropenia, fatigue and B symptoms and underlying diseases such as autoimmune diseases or malignancies are also often observed. The etiology of TCRγδ+ T-LGL proliferations is largely unknown. Here, we aimed to investigate underlying molecular mechanisms of these rare proliferations by performing gene expression profiling of TCRγδ+ T-LGL versus normal TCRγδ+ T cell subsets. From our initial microarray dataset we observed that TCRγδ+ TLGL leukemia forms a separate group when compared with different healthy control TCRγδ + T cell subsets, correlating best with the healthy TemRA subset. The lowest correlation was seen with the naive subset. Based on specific comparison between healthy control cells and TCRγδ+ T-LGL leukemia cells we observed up-regulation of survival, proliferation and hematopoietic system related genes, with a remarkable down-regulation of apoptotic pathway genes. RQ-PCR validation of important genes representative for the dataset, including apoptosis (XIAP, CASP1, BCLAF1 and CFLAR), proliferation/development (ID3) and inflammation (CD28, CCR7, CX3CR1 and IFNG) processes largely confirmed the dysregulation in proliferation and apoptosis. Based on these expression data we conclude that TCRγδ+ T-LGL leukemia is likely the result of an underlying aberrant molecular mechanisms leading to increased proliferation and reduced apoptosis.
AB - TCRγδ+ T-LGL leukemia is a rare form of chronic mature T cell disorders in elderly, which is generally characterized by a persistently enlarged CD3+CD57+TCRγδ+ large granular lymphocyte population in the peripheral blood with a monoclonal phenotype. Clinically, the disease is heterogeneous, most patients being largely asymptomatic, although neutropenia, fatigue and B symptoms and underlying diseases such as autoimmune diseases or malignancies are also often observed. The etiology of TCRγδ+ T-LGL proliferations is largely unknown. Here, we aimed to investigate underlying molecular mechanisms of these rare proliferations by performing gene expression profiling of TCRγδ+ T-LGL versus normal TCRγδ+ T cell subsets. From our initial microarray dataset we observed that TCRγδ+ TLGL leukemia forms a separate group when compared with different healthy control TCRγδ + T cell subsets, correlating best with the healthy TemRA subset. The lowest correlation was seen with the naive subset. Based on specific comparison between healthy control cells and TCRγδ+ T-LGL leukemia cells we observed up-regulation of survival, proliferation and hematopoietic system related genes, with a remarkable down-regulation of apoptotic pathway genes. RQ-PCR validation of important genes representative for the dataset, including apoptosis (XIAP, CASP1, BCLAF1 and CFLAR), proliferation/development (ID3) and inflammation (CD28, CCR7, CX3CR1 and IFNG) processes largely confirmed the dysregulation in proliferation and apoptosis. Based on these expression data we conclude that TCRγδ+ T-LGL leukemia is likely the result of an underlying aberrant molecular mechanisms leading to increased proliferation and reduced apoptosis.
U2 - 10.1371/journal.pone.0175670
DO - 10.1371/journal.pone.0175670
M3 - Article
AN - SCOPUS:85017530622
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e0175670
ER -