Durability of resistance against fungal, bacterial and viral pathogens; present situation

J.E. Parlevliet

Research output: Contribution to journalArticleAcademicpeer-review

176 Citations (Scopus)

Abstract

In evolutionary sense no resistance lasts forever. The durability of a resistance can be seen as a quantitative trait; resistances may range from not durable at all (ephemeral, or transient) to highly durable. Ephemeral resistance occurs against fungi and bacteria with a narrow host range, specialists. It is characterised by a hypersensitive reaction (HR), major gene inheritance and many resistance genes, which often occur in multiple allelic series and/or complex loci. These resistance genes (alleles) interact in a gene-for-gene way with a virulence genes (alleles) in the pathogen to give an incompatible reaction. The pathogen neutralises the effect of the resistance gene by a loss mutation in the corresponding avirulence allele. The incompatible reaction is not elicited any more and the pathogenicity is restored. The pathogens can afford the loss of many avirulences without loss of fitness. Durable resistance against specialised fungi and bacteria is often quantitative and based upon the additive effects of some to several genes, the resulting resistance being of another nature than the hypersensitive reaction. This quantitative resistance is present to nearly all pathogens at low to fair levels in most commercial cultivars. Durable resistance of a monogenic nature occurs too and is usually of a non-HR type. Resistance against fungi and bacteria with a wide host range, generalists, is usually quantitative and durable. Resistances against viruses are often fairly durable, even if these are based on monogenic, race-specific, HR resistances. The level of specialisation does not seem to be associated with the durability of resistance.
Original languageEnglish
Pages (from-to)147-157
JournalEuphytica
Volume124
Issue number2
DOIs
Publication statusPublished - 2002

Fingerprint Dive into the research topics of 'Durability of resistance against fungal, bacterial and viral pathogens; present situation'. Together they form a unique fingerprint.

  • Cite this