Abstract
Phytohormones play an essential role in different stages of plant-nematode interactions. Strigolactones (SLs) are a novel class of plant hormones which play an important role in plant development. Furthermore, certain soil-inhabiting organisms exploit this plant molecule as allelochemical. However, whether SLs play a role in plant parasitism by nematodes is as yet unknown. This prompted us to investigate the potential role of SLs in different stages of the nematode life cycle using the beet cyst nematode Heterodera schachtii and Arabidopsis as a model system. We analyzed the effect of SLs on cyst nematode hatching, host attraction and invasion, and the establishment of a feeding relation upon infection of the SL deficient mutant max4-1 and the SL signaling mutant max2-1. In addition, infection assays were performed under phosphate shortage to enhance SL production and in the presence of the synthetic SL analog GR24. From this study, we can conclude that SLs do not contribute to cyst nematode hatching at the levels tested but that they do play a role in host attraction and subsequent invasion in a MAX2 dependent manner. Furthermore, we observed that increased levels of exogenous and endogenous SLs change the root invasion zone. Upon root infection, cyst nematode development was enhanced in both the max2-1 and max4-1 mutants due to the formation of enlarged feeding cells. These data provide evidence for distinct roles of SLs during cyst nematode parasitism of plant roots.
Original language | English |
---|---|
Pages (from-to) | 129-140 |
Journal | European Journal of Plant Pathology |
Volume | 154 |
Issue number | 1 |
Early online date | 18 Feb 2019 |
DOIs | |
Publication status | Published - May 2019 |
Keywords
- Allelochemical
- Arabidopsis
- Heterodera schachtii
- Nematode feeding site
- Strigolactones
- Syncytium