Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model

M. Forlenza, J.J. Taverne-Thiele, N. Kachamakova, J.P. Scharsack, J.H.W.M. Rombout, G.F. Wiegertjes

Research output: Contribution to journalArticleAcademicpeer-review

56 Citations (Scopus)


Tyrosine nitration is a hallmark for nitrosative stress caused by the release of reactive oxygen and nitrogen species by activated macrophages and neutrophilic granulocytes at sites of inflammation and infection. In the first part of the study, we used an informative host¿parasite animal model to describe the differential contribution of macrophages and neutrophilic granulocytes to in vivo tissue nitration. To this purpose common carp (Cyprinus carpio) were infected with the extracellular blood parasite Trypanoplasma borreli (Kinetoplastida). After infection, serum nitrite levels significantly increased concurrently to the upregulation of inducible nitric oxide synthase (iNOS) gene expression. Tyrosine nitration, as measured by immunohistochemistry using an anti-nitrotyrosine antibody, dramatically increased in tissues from parasite-infected fish, demonstrating that elevated NO production during T. borreli infection coincides with nitrosative stress in immunologically active tissues. The combined use of an anti-nitrotyrosine antibody with a panel of monoclonal antibodies specific for several carp leukocytes, revealed that fish neutrophilic granulocytes strongly contribute to in vivo tissue nitration most likely through both, a peroxynitrite- and an MPO-mediated mechanism. Conversely, fish macrophages, by restricting the presence of radicals and enzymes to their intraphagosomal compartment, contribute to a much lesser extent to in vivo tissue nitration. In the second part of the study, we examined the effects of nitrosative stress on the parasite itself. Peroxynitrite, but not NO donor substances, exerted strong cytotoxicity on the parasite in vitro. In vivo, however, nitration of T. borreli was limited if not absent despite the presence of parasites in highly nitrated tissue areas. Further, we investigated parasite susceptibility to the human anti-trypanosome drug Melarsoprol (Arsobal), which directly interferes with the parasite-specific trypanothione anti-oxidant system. Arsobal treatment strongly decreased T. borreli viability both, in vitro and in vivo. All together, our data suggest an evolutionary conservation in modern bony fish of the function of neutrophilic granulocytes and macrophages in the nitration process and support the common carp as a suitable animal model for investigations on nitrosative stress in host¿parasite interactions. The potential of T. borreli to serve as an alternative tool for pharmacological studies on human anti-trypanosome drugs is discussed.
Original languageEnglish
Pages (from-to)3178-3189
JournalMolecular Immunology
Issue number11
Publication statusPublished - 2008


  • carp cyprinus-carpio
  • nitric-oxide synthase
  • trypanoplasma-borreli protozoa
  • protein-tyrosine nitration
  • in-vivo
  • functional-characterization
  • lymphocyte-activation
  • glutathione-reductase
  • trypanosoma-carassii
  • murine macrophages


Dive into the research topics of 'Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model'. Together they form a unique fingerprint.

Cite this