Abstract
Background
The Galapagos Islands constitute a highly diverse ecosystem and a unique source of variation in the form of endemic species. There are two endemic tomato species, Solanum galapagense and S. cheesmaniae and two introduced tomato species, S. pimpinellifolium and S. lycopersicum. Morphologically the two endemic tomato species of the Galapagos Islands are clearly distinct, but molecular marker analysis shows no clear separation. Tomatoes on the Galapagos are affected by both native and exotic herbivores. Bemisia tabaci is one of the most important introduced insects species that feeds on a wide range of plants. In this article, we address the question whether the differentiation between S. galapagense and S. cheesmaniae may be related to differences in susceptibility towards phloem-feeders and used B. tabaci as a model to evaluate this.
Results
We have characterized 12 accessions of S. galapagense, 22 of S. cheesmaniae, and one of S. lycopersicum as reference for whitefly resistance using no-choice experiments. Whitefly resistance was found in S. galapagense only and was associated with the presence of relatively high levels of acyl sugars and the presence of glandular trichomes of type I and IV. Genetic fingerprinting using 3316 SNP markers did not show a clear differentiation between the two endemic species. Acyl sugar accumulation as well as the climatic and geographical conditions at the collection sites of the accessions did not follow the morphological species boundaries.
Original language | English |
---|---|
Article number | 175 |
Number of pages | 12 |
Journal | BMC Evolutionary Biology |
Volume | 13 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- whitefly bemisia-argentifolii
- solanum section lycopersicon
- natural enemies
- wild tomatoes
- glandular trichomes
- demographic history
- herbivores drive
- spatial genetics
- diversity
- tabaci