TY - JOUR
T1 - Development of a Virosomal RSV Vaccine Containing 3D-PHAD® Adjuvant
T2 - Formulation, Composition, and Long-Term Stability
AU - Lederhofer, J.
AU - van Lent, J.
AU - Bhoelan, F.
AU - Karneva, Z.
AU - de Haan, A.
AU - Wilschut, J.C.
AU - Stegmann, T.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Purpose: Characterization of virosomes, in late stage preclinical development as vaccines for Respiratory Syncytial Virus (RSV), with a membrane-incorporated synthetic monophosphoryl lipid A, 3D-PHAD® adjuvant. Methods: Virosomes were initially formed by contacting a lipid film containing 3D-PHAD® with viral membranes solubilized with the short chain phospholipid DCPC, followed by dialysis, later by adding solubilized 3D-PHAD to viral membranes, or to preformed virosomes from DMSO. Results: Virosomes formed from lipid films contained the membrane glycoproteins G and F, at similar F to G ratios but lower concentrations than in virus, and the added lipids, but only a fraction of the 3D-PHAD®. By single particle tracking (SPT), the virosome size distribution resembled that seen by cryo-electron microscopy, but dynamic light scattering showed much larger particles. These differences were caused by small virosome aggregates. Measured by SPT, virosomes were stable for 300 days. 3DPHAD ® incorporation in virosomes could be enhanced by providing the adjuvant from DCPC solubilized stock, but also by adding DMSO dissolved adjuvant to pre-formed virosomes. Virosomes with 0.1 mg/mg of 3D-PHAD®/viral protein from DMSO induced antibody titers similar to those by virosomes containing 0.2 mg/mg of DCPC-solubilized 3D-PHAD®. Conclusions: Stable 3D-PHAD® adjuvanted RSV virosomes can be formulated.
AB - Purpose: Characterization of virosomes, in late stage preclinical development as vaccines for Respiratory Syncytial Virus (RSV), with a membrane-incorporated synthetic monophosphoryl lipid A, 3D-PHAD® adjuvant. Methods: Virosomes were initially formed by contacting a lipid film containing 3D-PHAD® with viral membranes solubilized with the short chain phospholipid DCPC, followed by dialysis, later by adding solubilized 3D-PHAD to viral membranes, or to preformed virosomes from DMSO. Results: Virosomes formed from lipid films contained the membrane glycoproteins G and F, at similar F to G ratios but lower concentrations than in virus, and the added lipids, but only a fraction of the 3D-PHAD®. By single particle tracking (SPT), the virosome size distribution resembled that seen by cryo-electron microscopy, but dynamic light scattering showed much larger particles. These differences were caused by small virosome aggregates. Measured by SPT, virosomes were stable for 300 days. 3DPHAD ® incorporation in virosomes could be enhanced by providing the adjuvant from DCPC solubilized stock, but also by adding DMSO dissolved adjuvant to pre-formed virosomes. Virosomes with 0.1 mg/mg of 3D-PHAD®/viral protein from DMSO induced antibody titers similar to those by virosomes containing 0.2 mg/mg of DCPC-solubilized 3D-PHAD®. Conclusions: Stable 3D-PHAD® adjuvanted RSV virosomes can be formulated.
KW - adjuvant
KW - monophosphoryl lipid A
KW - respiratory syncytial virus
KW - single particle tracking
KW - vaccine
KW - virosomes
U2 - 10.1007/s11095-018-2453-y
DO - 10.1007/s11095-018-2453-y
M3 - Article
AN - SCOPUS:85049507547
SN - 0724-8741
VL - 35
JO - Pharmaceutical Research
JF - Pharmaceutical Research
IS - 9
M1 - 172
ER -