Projects per year
Abstract
Since its detection in The Netherlands in 1990, M. chitwoodi became a major threat to seed and ware
potato production. An integrated approach to control this nematode is needed and first steps have
been taken. One of these is the availability of resistant green manure crops. The EU project
QLRT--1999--1462 (DREAM), proved the feasibility to produce resistant green manure crops against
M. chitwoodi and M. fallax. As a result, breeders in The Netherlands and Germany introduced
partially resistant fodder radish varieties.
Partial resistance in fodder radish is the result of a mixture of susceptible and resistant seeds.
Current methods do not reflect the real host--status of these varieties, they provide resistance
based on Pf/Pi ratio, which is known to be density dependent. Moreover, they are tested in an
artificial system that ignores the relevant conditions set by the population dynamics of this
nematode. Therefore, the development of a reliable method to estimate the partial resistance of
these fodder radish varieties is of major importance.
Teklu et al., (2014) indicated that studying the population dynamics using a range of Pi values and
a specific experimental setup made it possible to estimate partial resistance of fodder radish. A
second experiment with two new varieties (Melotop and POR1101), two previously tested ones
(Defender and Contra) and two standard controls (Radical and Siletina) was carried out to ascertain
the reproducibility of the first results, check the Pi independence of the partial resistance
estimator and assess the proportion of resistant seeds in the seed mixture. Ultimately, this
research has to lead to a simplified screening method at one/two Pi densities while maintaining the
validity and precision of the estimator.
The biomass of all plant parts were assessed and correlated with the Pi to investigate the
magnitude of any negative effect of plant growth on the sanitary effect of this green manure.
Not all tested varieties showed tolerance to M. chitwoodi. Minimum yield (m) varied between 0 and
0.8. The number of roots with galls increased with Pi and was highest in both controls. The results
confirm the use of population dynamic models to define partial resistance. Maximum multiplication
rates (a) and maximum population densities (M) were very low. The two standard varieties, Radical
and Siletina, (a = 0.116 and 0.136 and M =
1.85 and 1.12 J2 (g dry soil)--1, respectively), proved to be bad hosts. Partial resistance based
on the more reliable parameter M was high (RS m <1%) for tested varieties. RSa and RSM
85
were not always equal, as estimation of a was difficult, due to the low nematode counts and
higher standard errors at low Pi values of the resistant varieties. Possibilities to use fewer
nematode densities will be discussed.
Original language | English |
---|---|
Title of host publication | 54th Annual Meeting of the Society of Nematologists |
Publisher | SON |
Pages | 84-85 |
Publication status | Published - 2015 |
Event | 54th Annual Meeting of the Society of Nematologists, East Lansing, Michigan, USA - Duration: 19 Jul 2015 → 24 Jul 2015 |
Conference/symposium
Conference/symposium | 54th Annual Meeting of the Society of Nematologists, East Lansing, Michigan, USA |
---|---|
Period | 19/07/15 → 24/07/15 |
Fingerprint
Dive into the research topics of 'Developing a partial resistance test for fodder radish (Raphanus Sativus var. olieformis) against meloidgyne chitwoodi'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Host status and partial resistance testing of crops for Meloidogyne chitwoodi.
Teklu, M. (PI), Bakker, J. (CoI), Teklu, M. (PhD candidate), Bakker, J. (Promotor) & Been, T. (Co-promotor)
1/09/11 → 8/05/18
Project: PhD