Detecting animals in African Savanna with UAVs and the crowds

Nicolas Rey, Michele Volpi, Stéphane Joost, Devis Tuia*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

87 Citations (Scopus)

Abstract

Unmanned aerial vehicles (UAVs) offer new opportunities for wildlife monitoring, with several advantages over traditional field-based methods. They have readily been used to count birds, marine mammals and large herbivores in different environments, tasks which are routinely performed through manual counting in large collections of images. In this paper, we propose a semi-automatic system able to detect large mammals in semi-arid Savanna. It relies on an animal-detection system based on machine learning, trained with crowd-sourced annotations provided by volunteers who manually interpreted sub-decimeter resolution color images. The system achieves a high recall rate and a human operator can then eliminate false detections with limited effort. Our system provides good perspectives for the development of data-driven management practices in wildlife conservation. It shows that the detection of large mammals in semi-arid Savanna can be approached by processing data provided by standard RGB cameras mounted on affordable fixed wings UAVs.
Original languageEnglish
Pages (from-to)341-351
JournalRemote Sensing of Environment
Volume200
DOIs
Publication statusPublished - 2017

Keywords

  • Active learning
  • Animal conservation
  • Crowd-sourcing data
  • Object detection
  • Unmanned aerial vehicles
  • Very high resolution
  • Wildlife monitoring

Fingerprint

Dive into the research topics of 'Detecting animals in African Savanna with UAVs and the crowds'. Together they form a unique fingerprint.

Cite this