TY - JOUR
T1 - Defense responses of Fusarium oxysporum to 2,4-Diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens
AU - Schouten, A.
AU - van den Berg, G.
AU - Edel-Hermann, V.
AU - Steinberg, C.
AU - Gautheron, N.
AU - Alabouvette, C.
AU - de Vos, C.H.
AU - Lemanceau, P.
AU - Raaijmakers, J.M.
PY - 2004
Y1 - 2004
N2 - A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the E oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant E oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated that deacetylation of 2,4-DAPG to the less fungitoxic derivatives monoacetylphloroglucinol and phloroglucinol is among the initial mechanisms of 2,4-DAPG degradation. Production of fusaric acid, a known inhibitor of 2,4-DAPG biosynthesis in P fluorescens, differed considerably among both 2,4-DAPG-sensitive and -tolerant E oxysporum strains, indicating that fusaric acid production may be as important for 2,4-DAPG-sensitive as for -tolerant E oxysporum strains. Whether 2,4-DAPG triggers fusaric acid production was studied for six E oxysporum strains; 2,4-DAPG had no significant effect on fusaric acid production in four strains. In two strains, however, sublethal concentrations of 2,4-DAPG either enhanced or significantly decreased fusaric acid production. The implications of 2,4-DAPG degradation, the distribution of this trait within E oxysporum and other plant-pathogenic fungi, and the consequences for the efficacy of biological control are discussed.
AB - A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the E oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant E oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated that deacetylation of 2,4-DAPG to the less fungitoxic derivatives monoacetylphloroglucinol and phloroglucinol is among the initial mechanisms of 2,4-DAPG degradation. Production of fusaric acid, a known inhibitor of 2,4-DAPG biosynthesis in P fluorescens, differed considerably among both 2,4-DAPG-sensitive and -tolerant E oxysporum strains, indicating that fusaric acid production may be as important for 2,4-DAPG-sensitive as for -tolerant E oxysporum strains. Whether 2,4-DAPG triggers fusaric acid production was studied for six E oxysporum strains; 2,4-DAPG had no significant effect on fusaric acid production in four strains. In two strains, however, sublethal concentrations of 2,4-DAPG either enhanced or significantly decreased fusaric acid production. The implications of 2,4-DAPG degradation, the distribution of this trait within E oxysporum and other plant-pathogenic fungi, and the consequences for the efficacy of biological control are discussed.
KW - genetic diversity
KW - abc transporters
KW - take-all
KW - biocontrol
KW - resistance
KW - populations
KW - biosynthesis
KW - sensitivity
KW - strains
KW - tomato
U2 - 10.1094/MPMI.2004.17.11.1201
DO - 10.1094/MPMI.2004.17.11.1201
M3 - Article
SN - 0894-0282
VL - 17
SP - 1201
EP - 1211
JO - Molecular Plant-Microbe Interactions
JF - Molecular Plant-Microbe Interactions
IS - 11
ER -