Cultured skin microbiota attracts malaria mosquitoes

N.O. Verhulst, H. Beijleveld, B.G.J. Knols, W. Takken, G. Schraa, H.J. Bouwmeester, R.C. Smallegange

Research output: Contribution to journalArticleAcademicpeer-review

94 Citations (Scopus)

Abstract

Background - Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours. It is hypothesized that host attractiveness and selection of An. gambiae is affected by the species composition, density, and metabolic activity of the skin microbiota. A study is presented in which the production and constituency of volatile organic compounds (VOCs) by human skin microbiota is examined and the behavioural responses of An. gambiae to VOCs from skin microbiota are investigated. Methods - Blood agar plates incubated with skin microbiota from human feet or with a reference strain of Staphylococcus epidermidis were tested for their attractiveness to An. gambiae in olfactometer bioassays and indoor trapping experiments. Entrained air collected from blood agar plates incubated with natural skin microbiota or with S. epidermidis were analysed using GC-MS. A synthetic blend of the compounds identified was tested for its attractiveness to An. gambiae. Behavioural data were analysed by a ¿2-test and GLM. GC-MS results were analysed by fitting an exponential regression line to test the effect of the concentration of bacteria. Results - More An. gambiae were caught with blood agar plates incubated with skin bacteria than with sterile blood agar plates, with a significant effect of incubation time and dilution of the skin microbiota. When bacteria from the feet of four other volunteers were tested, similar effects were found. Fourteen putative attractants were found in the headspace of the skin bacteria. A synthetic blend of 10 of these was attractive to An. gambiae. Conclusions - The discovery that volatiles produced by human skin microorganisms in vitro mediate An. gambiae host-seeking behaviour creates new opportunities for the development of odour-baited trapping systems. Additionally, identification of bacterial volatiles provides a new method to develop synthetic blends, attractive to An. gambiae and possibly other anthropophilic disease vectors.
Original languageEnglish
Article number302
Number of pages12
JournalMalaria Journal
Volume8
DOIs
Publication statusPublished - 2009

Keywords

  • gambiae-sensu-stricto
  • gas chromatography/mass spectrometry
  • volatile organic-compounds
  • mm-x traps
  • anopheles-gambiae
  • aedes-aegypti
  • axillary odor
  • human sweat
  • limburger cheese
  • tsetse-flies

Fingerprint

Dive into the research topics of 'Cultured skin microbiota attracts malaria mosquitoes'. Together they form a unique fingerprint.

Cite this