Crop yield prediction using machine learning: A systematic literature review

Thomas van Klompenburg, Ayalew Kassahun, Cagatay Catal*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

680 Citations (Scopus)


Machine learning is an important decision support tool for crop yield prediction, including supporting decisions on what crops to grow and what to do during the growing season of the crops. Several machine learning algorithms have been applied to support crop yield prediction research. In this study, we performed a Systematic Literature Review (SLR) to extract and synthesize the algorithms and features that have been used in crop yield prediction studies. Based on our search criteria, we retrieved 567 relevant studies from six electronic databases, of which we have selected 50 studies for further analysis using inclusion and exclusion criteria. We investigated these selected studies carefully, analyzed the methods and features used, and provided suggestions for further research. According to our analysis, the most used features are temperature, rainfall, and soil type, and the most applied algorithm is Artificial Neural Networks in these models. After this observation based on the analysis of machine learning-based 50 papers, we performed an additional search in electronic databases to identify deep learning-based studies, reached 30 deep learning-based papers, and extracted the applied deep learning algorithms. According to this additional analysis, Convolutional Neural Networks (CNN) is the most widely used deep learning algorithm in these studies, and the other widely used deep learning algorithms are Long-Short Term Memory (LSTM) and Deep Neural Networks (DNN).

Original languageEnglish
Article number105709
JournalComputers and Electronics in Agriculture
Publication statusPublished - Oct 2020


  • Crop yield prediction
  • Decision support system
  • Deep learning
  • Machine learning
  • Systematic literature review


Dive into the research topics of 'Crop yield prediction using machine learning: A systematic literature review'. Together they form a unique fingerprint.

Cite this