Crop growth and development in closed and semi-closed greenhouses

Tian Qian

Research output: Thesisinternal PhD, WUAcademic

Abstract

(Semi-)closed greenhouses have been developed over the last decades to conserve energy. In a closed greenhouse, window ventilation is fully replaced by mechanical cooling while solar heat is temporarily stored in an aquifer. A semi-closed greenhouse has a smaller cooling capacity than a closed greenhouse and, in which mechanical cooling is combined with window ventilation. (Semi-)closed greenhouses create new climate conditions: high CO2 concentrations irrespective of the outdoor climate, and vertical gradients in temperature and vapour pressure deficit throughout the canopy. This thesis focuses on the crop physiology in (semi-)closed greenhouses, and investigates the effects of the new climate conditions on crop growth, development and underlying processes.

Cumulative production in (semi) closed greenhouses increased by 6-14% compared to the open greenhouse, depending on the cooling capacity. The production increase in the (semi-)closed greenhouses was explained by the higher CO2 concentrations. In many species, feedback inhibition of photosynthesis occurs when plants are grown at high CO2. The results, however, suggest that high CO2 concentrations do not cause feedback inhibition in high producing crops, because the plants have sufficient sink organs (fruits) to utilise all assimilates. Pruning experiments showed that photosynthetic acclimation to elevated CO2 concentration only occurred when the number of fruits was considerably reduced.  

Cooling below the canopy induced vertical temperature and vapour pressure deficit gradients. These gradients correlated with outside radiation and outside temperature. Despite the occurrence of vertical temperature gradients, plant growth and fruit yield were mostly unaffected. Leaf and truss initiation rates did not differ in the presence or absence of a vertical temperature gradients, since air temperatures at the top of the canopy were kept comparable. The only observed response of plants to the vertical temperature gradient was the reduced rate of fruit development in the lower part of the canopy. This resulted in a longer period between anthesis and fruit harvest and an increase in the average fruit weight in summer. However, total fruit production over the whole season was not affected.

The effects of the climate factors light, CO2 concentration, temperature, and humidity on leaf photosynthesis were investigated. The photosynthesis model of Farquhar, von Caemmerer and Berry (FvCB) was modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase (Rubisco) activation. The photosynthetic parameters: the maximum carboxylation capacity (Vcmax) and the maximum electron transport rate (Jmax), α (the efficiency of light energy conversion), θ (the curvature of light response of electron transport), and Rd (the non-photorespiratory CO2 release) were estimated based on measurements under a wide range of environmental conditions in the semi-closed greenhouse. The simultaneous estimation method and the nonlinear mixed effects model were applied to ensure the accuracy of the parameter estimation. Observations and predictions matched well (R2=0.94).

The yield increase in a closed greenhouse, compared to that in an open greenhouse was analyzed based on physiological and developmental processes. The yield increase in the (semi-)closed greenhouses was the result of an increase of net leaf photosynthesis. The (semi-)closed greenhouses have been applied commercially first in the Netherlands, and later in other countries. The knowledge obtained from (semi-)closed greenhouses is applied in conventional open greenhouse as well, which is called the next generation greenhouse cultivation. A number of innovations are being developed for greenhouse industry to reduce energy consumption while improving production and quality.

LanguageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Marcelis, Leo, Promotor
  • Dieleman, Anja, Co-promotor
  • Elings, Anne, Co-promotor
Award date24 May 2017
Place of PublicationWageningen
Publisher
Print ISBNs9789463430708
DOIs
Publication statusPublished - 2017

Fingerprint

growth and development
greenhouses
crops
cooling
temperature profiles
photosynthesis
canopy
climate
fruits
vapor pressure
electron transfer
fruiting
leaves
temperature
energy conversion
carboxylation
ribulose 1,5-diphosphate
pruning
fruit yield
aquifers

Keywords

  • crops
  • crop production
  • growth
  • greenhouse crops
  • greenhouse horticulture
  • climate
  • semi-closed greenhouses
  • photosynthesis
  • temperature

Cite this

Qian, Tian. / Crop growth and development in closed and semi-closed greenhouses. Wageningen : Wageningen University, 2017. 112 p.
@phdthesis{b4a59c89a63c4c12aa7443ea355e6367,
title = "Crop growth and development in closed and semi-closed greenhouses",
abstract = "(Semi-)closed greenhouses have been developed over the last decades to conserve energy. In a closed greenhouse, window ventilation is fully replaced by mechanical cooling while solar heat is temporarily stored in an aquifer. A semi-closed greenhouse has a smaller cooling capacity than a closed greenhouse and, in which mechanical cooling is combined with window ventilation. (Semi-)closed greenhouses create new climate conditions: high CO2 concentrations irrespective of the outdoor climate, and vertical gradients in temperature and vapour pressure deficit throughout the canopy. This thesis focuses on the crop physiology in (semi-)closed greenhouses, and investigates the effects of the new climate conditions on crop growth, development and underlying processes. Cumulative production in (semi) closed greenhouses increased by 6-14{\%} compared to the open greenhouse, depending on the cooling capacity. The production increase in the (semi-)closed greenhouses was explained by the higher CO2 concentrations. In many species, feedback inhibition of photosynthesis occurs when plants are grown at high CO2. The results, however, suggest that high CO2 concentrations do not cause feedback inhibition in high producing crops, because the plants have sufficient sink organs (fruits) to utilise all assimilates. Pruning experiments showed that photosynthetic acclimation to elevated CO2 concentration only occurred when the number of fruits was considerably reduced.   Cooling below the canopy induced vertical temperature and vapour pressure deficit gradients. These gradients correlated with outside radiation and outside temperature. Despite the occurrence of vertical temperature gradients, plant growth and fruit yield were mostly unaffected. Leaf and truss initiation rates did not differ in the presence or absence of a vertical temperature gradients, since air temperatures at the top of the canopy were kept comparable. The only observed response of plants to the vertical temperature gradient was the reduced rate of fruit development in the lower part of the canopy. This resulted in a longer period between anthesis and fruit harvest and an increase in the average fruit weight in summer. However, total fruit production over the whole season was not affected. The effects of the climate factors light, CO2 concentration, temperature, and humidity on leaf photosynthesis were investigated. The photosynthesis model of Farquhar, von Caemmerer and Berry (FvCB) was modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase (Rubisco) activation. The photosynthetic parameters: the maximum carboxylation capacity (Vcmax) and the maximum electron transport rate (Jmax), α (the efficiency of light energy conversion), θ (the curvature of light response of electron transport), and Rd (the non-photorespiratory CO2 release) were estimated based on measurements under a wide range of environmental conditions in the semi-closed greenhouse. The simultaneous estimation method and the nonlinear mixed effects model were applied to ensure the accuracy of the parameter estimation. Observations and predictions matched well (R2=0.94). The yield increase in a closed greenhouse, compared to that in an open greenhouse was analyzed based on physiological and developmental processes. The yield increase in the (semi-)closed greenhouses was the result of an increase of net leaf photosynthesis. The (semi-)closed greenhouses have been applied commercially first in the Netherlands, and later in other countries. The knowledge obtained from (semi-)closed greenhouses is applied in conventional open greenhouse as well, which is called the next generation greenhouse cultivation. A number of innovations are being developed for greenhouse industry to reduce energy consumption while improving production and quality.",
keywords = "crops, crop production, growth, greenhouse crops, greenhouse horticulture, climate, semi-closed greenhouses, photosynthesis, temperature, gewassen, gewasproductie, groei, kasgewassen, glastuinbouw, klimaat, semi-gesloten kassen, fotosynthese, temperatuur",
author = "Tian Qian",
note = "WU thesis 6656 Includes bibliographical references. - With summary in English",
year = "2017",
doi = "10.18174/403466",
language = "English",
isbn = "9789463430708",
publisher = "Wageningen University",
school = "Wageningen University",

}

Qian, T 2017, 'Crop growth and development in closed and semi-closed greenhouses', Doctor of Philosophy, Wageningen University, Wageningen. https://doi.org/10.18174/403466

Crop growth and development in closed and semi-closed greenhouses. / Qian, Tian.

Wageningen : Wageningen University, 2017. 112 p.

Research output: Thesisinternal PhD, WUAcademic

TY - THES

T1 - Crop growth and development in closed and semi-closed greenhouses

AU - Qian, Tian

N1 - WU thesis 6656 Includes bibliographical references. - With summary in English

PY - 2017

Y1 - 2017

N2 - (Semi-)closed greenhouses have been developed over the last decades to conserve energy. In a closed greenhouse, window ventilation is fully replaced by mechanical cooling while solar heat is temporarily stored in an aquifer. A semi-closed greenhouse has a smaller cooling capacity than a closed greenhouse and, in which mechanical cooling is combined with window ventilation. (Semi-)closed greenhouses create new climate conditions: high CO2 concentrations irrespective of the outdoor climate, and vertical gradients in temperature and vapour pressure deficit throughout the canopy. This thesis focuses on the crop physiology in (semi-)closed greenhouses, and investigates the effects of the new climate conditions on crop growth, development and underlying processes. Cumulative production in (semi) closed greenhouses increased by 6-14% compared to the open greenhouse, depending on the cooling capacity. The production increase in the (semi-)closed greenhouses was explained by the higher CO2 concentrations. In many species, feedback inhibition of photosynthesis occurs when plants are grown at high CO2. The results, however, suggest that high CO2 concentrations do not cause feedback inhibition in high producing crops, because the plants have sufficient sink organs (fruits) to utilise all assimilates. Pruning experiments showed that photosynthetic acclimation to elevated CO2 concentration only occurred when the number of fruits was considerably reduced.   Cooling below the canopy induced vertical temperature and vapour pressure deficit gradients. These gradients correlated with outside radiation and outside temperature. Despite the occurrence of vertical temperature gradients, plant growth and fruit yield were mostly unaffected. Leaf and truss initiation rates did not differ in the presence or absence of a vertical temperature gradients, since air temperatures at the top of the canopy were kept comparable. The only observed response of plants to the vertical temperature gradient was the reduced rate of fruit development in the lower part of the canopy. This resulted in a longer period between anthesis and fruit harvest and an increase in the average fruit weight in summer. However, total fruit production over the whole season was not affected. The effects of the climate factors light, CO2 concentration, temperature, and humidity on leaf photosynthesis were investigated. The photosynthesis model of Farquhar, von Caemmerer and Berry (FvCB) was modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase (Rubisco) activation. The photosynthetic parameters: the maximum carboxylation capacity (Vcmax) and the maximum electron transport rate (Jmax), α (the efficiency of light energy conversion), θ (the curvature of light response of electron transport), and Rd (the non-photorespiratory CO2 release) were estimated based on measurements under a wide range of environmental conditions in the semi-closed greenhouse. The simultaneous estimation method and the nonlinear mixed effects model were applied to ensure the accuracy of the parameter estimation. Observations and predictions matched well (R2=0.94). The yield increase in a closed greenhouse, compared to that in an open greenhouse was analyzed based on physiological and developmental processes. The yield increase in the (semi-)closed greenhouses was the result of an increase of net leaf photosynthesis. The (semi-)closed greenhouses have been applied commercially first in the Netherlands, and later in other countries. The knowledge obtained from (semi-)closed greenhouses is applied in conventional open greenhouse as well, which is called the next generation greenhouse cultivation. A number of innovations are being developed for greenhouse industry to reduce energy consumption while improving production and quality.

AB - (Semi-)closed greenhouses have been developed over the last decades to conserve energy. In a closed greenhouse, window ventilation is fully replaced by mechanical cooling while solar heat is temporarily stored in an aquifer. A semi-closed greenhouse has a smaller cooling capacity than a closed greenhouse and, in which mechanical cooling is combined with window ventilation. (Semi-)closed greenhouses create new climate conditions: high CO2 concentrations irrespective of the outdoor climate, and vertical gradients in temperature and vapour pressure deficit throughout the canopy. This thesis focuses on the crop physiology in (semi-)closed greenhouses, and investigates the effects of the new climate conditions on crop growth, development and underlying processes. Cumulative production in (semi) closed greenhouses increased by 6-14% compared to the open greenhouse, depending on the cooling capacity. The production increase in the (semi-)closed greenhouses was explained by the higher CO2 concentrations. In many species, feedback inhibition of photosynthesis occurs when plants are grown at high CO2. The results, however, suggest that high CO2 concentrations do not cause feedback inhibition in high producing crops, because the plants have sufficient sink organs (fruits) to utilise all assimilates. Pruning experiments showed that photosynthetic acclimation to elevated CO2 concentration only occurred when the number of fruits was considerably reduced.   Cooling below the canopy induced vertical temperature and vapour pressure deficit gradients. These gradients correlated with outside radiation and outside temperature. Despite the occurrence of vertical temperature gradients, plant growth and fruit yield were mostly unaffected. Leaf and truss initiation rates did not differ in the presence or absence of a vertical temperature gradients, since air temperatures at the top of the canopy were kept comparable. The only observed response of plants to the vertical temperature gradient was the reduced rate of fruit development in the lower part of the canopy. This resulted in a longer period between anthesis and fruit harvest and an increase in the average fruit weight in summer. However, total fruit production over the whole season was not affected. The effects of the climate factors light, CO2 concentration, temperature, and humidity on leaf photosynthesis were investigated. The photosynthesis model of Farquhar, von Caemmerer and Berry (FvCB) was modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase (Rubisco) activation. The photosynthetic parameters: the maximum carboxylation capacity (Vcmax) and the maximum electron transport rate (Jmax), α (the efficiency of light energy conversion), θ (the curvature of light response of electron transport), and Rd (the non-photorespiratory CO2 release) were estimated based on measurements under a wide range of environmental conditions in the semi-closed greenhouse. The simultaneous estimation method and the nonlinear mixed effects model were applied to ensure the accuracy of the parameter estimation. Observations and predictions matched well (R2=0.94). The yield increase in a closed greenhouse, compared to that in an open greenhouse was analyzed based on physiological and developmental processes. The yield increase in the (semi-)closed greenhouses was the result of an increase of net leaf photosynthesis. The (semi-)closed greenhouses have been applied commercially first in the Netherlands, and later in other countries. The knowledge obtained from (semi-)closed greenhouses is applied in conventional open greenhouse as well, which is called the next generation greenhouse cultivation. A number of innovations are being developed for greenhouse industry to reduce energy consumption while improving production and quality.

KW - crops

KW - crop production

KW - growth

KW - greenhouse crops

KW - greenhouse horticulture

KW - climate

KW - semi-closed greenhouses

KW - photosynthesis

KW - temperature

KW - gewassen

KW - gewasproductie

KW - groei

KW - kasgewassen

KW - glastuinbouw

KW - klimaat

KW - semi-gesloten kassen

KW - fotosynthese

KW - temperatuur

U2 - 10.18174/403466

DO - 10.18174/403466

M3 - internal PhD, WU

SN - 9789463430708

PB - Wageningen University

CY - Wageningen

ER -