TY - JOUR
T1 - CO2 elevation and N fertilizer supply modulate leaf physiology, crop growth and water use efficiency of maize in response to progressive soil drought
AU - Zhang, Manyi
AU - Wei, Guiyu
AU - Cui, Bingjing
AU - Liu, Chunshuo
AU - Wan, Heng
AU - Hou, Jingxiang
AU - Chen, Yiting
AU - Zhang, Jiarui
AU - Liu, Jie
AU - Wei, Zhenhua
PY - 2024/3
Y1 - 2024/3
N2 - Elevated atmospheric CO2 concentration (e[CO2]) and varied nitrogen (N) fertilization levels may mediate the different responses of C4 crops to progressive soil drought. In this study, the effects of reduced N (N1, 0.8 g pot−1) and adequate N (N2, 1.6 g pot−1) supply on leaf physiology, plant growth and water use efficiency (WUE) of maize (C4 crop) exposed to progressive soil drought grown at ambient CO2 (a[CO2], 400 ppm) and elevated CO2 (e[CO2], 800 ppm) concentration were investigated. The results indicated that compared with a[CO2], net photosynthetic rate (An) and leaf water potential (Ψl) at e[CO2] were maintained in maize leaves, while stomatal conductance (gs), transpiration rate and leaf hydraulic conductance were decreased, leading to enhanced WUE from stomatal to leaf scale. Despite An and Ψl of e[CO2] plants were more sensitive to progressive soil drought under both N fertilization levels, e[CO2] would increase leaf ABA concentration ([ABA]leaf) but decline the gs response to [ABA]leaf under N1 supply. e[CO2] coupled with N1 fertilization was conducive to enlarging leaf area, promoting specific leaf area, root and total dry mass, whereas reduced stomatal aperture and plant water use under progressive drought stress, contributing to an improvement in plant WUE, implying a better modulation of maize leaf stomata and water status under reduced N supply combined with e[CO2] responding to progressive soil drought. These findings in the current study would provide valuable advice for N management on maize (C4) crop efficient water use in a drier and CO2-enriched environment.
AB - Elevated atmospheric CO2 concentration (e[CO2]) and varied nitrogen (N) fertilization levels may mediate the different responses of C4 crops to progressive soil drought. In this study, the effects of reduced N (N1, 0.8 g pot−1) and adequate N (N2, 1.6 g pot−1) supply on leaf physiology, plant growth and water use efficiency (WUE) of maize (C4 crop) exposed to progressive soil drought grown at ambient CO2 (a[CO2], 400 ppm) and elevated CO2 (e[CO2], 800 ppm) concentration were investigated. The results indicated that compared with a[CO2], net photosynthetic rate (An) and leaf water potential (Ψl) at e[CO2] were maintained in maize leaves, while stomatal conductance (gs), transpiration rate and leaf hydraulic conductance were decreased, leading to enhanced WUE from stomatal to leaf scale. Despite An and Ψl of e[CO2] plants were more sensitive to progressive soil drought under both N fertilization levels, e[CO2] would increase leaf ABA concentration ([ABA]leaf) but decline the gs response to [ABA]leaf under N1 supply. e[CO2] coupled with N1 fertilization was conducive to enlarging leaf area, promoting specific leaf area, root and total dry mass, whereas reduced stomatal aperture and plant water use under progressive drought stress, contributing to an improvement in plant WUE, implying a better modulation of maize leaf stomata and water status under reduced N supply combined with e[CO2] responding to progressive soil drought. These findings in the current study would provide valuable advice for N management on maize (C4) crop efficient water use in a drier and CO2-enriched environment.
KW - CO elevation
KW - leaf physiology
KW - maize
KW - N fertilization
KW - progressive soil drought
KW - water use efficiency
U2 - 10.1111/jac.12692
DO - 10.1111/jac.12692
M3 - Article
AN - SCOPUS:85185658213
SN - 0931-2250
VL - 210
JO - Journal of Agronomy and Crop Science
JF - Journal of Agronomy and Crop Science
IS - 2
M1 - e12692
ER -