Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen

T.H.M. Wijgerde, C.I.F. Silva, V. Scherders, J. van Bleijswijk, R. Osinga

Research output: Contribution to journalArticleAcademicpeer-review

26 Citations (Scopus)

Abstract

Coral reefs are essential to many nations, and are currently in global decline. Although climate models predict decreases in seawater pH (~0.3 units) and oxygen saturation (~5 percentage points), these are exceeded by the current daily pH and oxygen fluctuations on many reefs (pH 7.8-8.7 and 27-241% O2 saturation). We investigated the effect of oxygen and pH fluctuations on coral calcification in the laboratory using the model species Acropora millepora. Light calcification rates were greatly enhanced (+178%) by increased seawater pH, but only at normoxia; hyperoxia completely negated this positive effect. Dark calcification rates were significantly inhibited (51-75%) at hypoxia, whereas pH had no effect. Our preliminary results suggest that within the current oxygen and pH range, oxygen has substantial control over coral growth, whereas the role of pH is limited. This has implications for reef formation in this era of rapid climate change, which is accompanied by a decrease in seawater oxygen saturation owing to higher water temperatures and coastal eutrophication.
Original languageEnglish
Pages (from-to)489-493
JournalBiology Open
Volume3
Issue number6
DOIs
Publication statusPublished - 2014

Keywords

  • galaxea-fascicularis
  • scleractinian corals
  • carbonate chemistry
  • ocean acidification
  • photosynthesis
  • reefs
  • light
  • respiration
  • ecosystems
  • impacts

Fingerprint

Dive into the research topics of 'Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen'. Together they form a unique fingerprint.

Cite this