COP1 mediates the coordination of root and shoot growth by light through modulation of PIN10 and PIN2-dependent auxin transport in Arabidopsis.

M. Sassi, Y. Lu, P. Dhonukshe, I. Blilou, B. Scheres

Research output: Contribution to journalArticleAcademicpeer-review

113 Citations (Scopus)

Abstract

When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.
Original languageEnglish
Pages (from-to)3402-3412
JournalDevelopment
Volume139
DOIs
Publication statusPublished - 2012

Keywords

  • efflux carrier
  • phenotypic plasticity
  • plant development
  • cell polarity
  • pin proteins
  • thaliana
  • expression
  • hy5
  • differentiation
  • biosynthesis

Fingerprint

Dive into the research topics of 'COP1 mediates the coordination of root and shoot growth by light through modulation of PIN10 and PIN2-dependent auxin transport in Arabidopsis.'. Together they form a unique fingerprint.

Cite this