Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact

G. Bosch, H.H.E. van Zanten, A. Zamprogna, M. Veenenbos, N.P. Meijer, H.J. van der Fels-Klerx, J.J.A. van Loon

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

To meet the projected substantial growth in the global demand for meat, we are challenged to develop additional protein-rich feed ingredients while minimizing the use of natural resources. The larvae of the black soldier fly (BSF) have the capacity to convert low-value organic resources into a high quality protein source for pigs, chickens and fish and as such may increase both the productivity and the efficiency of the food chain. The aim of this study was to assess the environmental opportunities of BSF larvae reared on different sources using up to date literature data on the efficiency of BSF larvae in converting such resources into biomass. The current EU legislative framework was used to classify the various resources for rearing insects. Data of forty articles published until 1 September 2017 were used, reporting on in total 78 (mixtures of) resources used for growing BSF larvae. Data on the resource conversion efficiency on dry matter (DM) and N basis was presented in 11 and 5 studies, evaluating 21 and 13 resources, respectively. Resources studied included food and feed materials (A, n = 8 resources), foods not intended (anymore) for human consumption (B1, n = 4), and residual streams such as food waste (D, n = 2), and animal manure (E, n = 7). Conversion efficiency varied from 1.3 to 32.8% for DM and from 7.4 to 74.8% for N. Using life cycle assessment, our environmental results showed that resources within the legal groups (i.e. A and B1) that are, at the moment, not allowed in EU as animal feed have in general a lower impact in terms of global warming potential, energy use, and land use. On a per kg protein basis, BSF larvae reared on a resource that contains food (e.g. sorghum) and feed (e.g. dried distillers grains with solubles) products generally have higher environmental impacts than conventional feed protein sources (fishmeal and soybean meal). Using insects as feed, therefore, has potential to lower the environmental impact of food production but a careful examination of the resource is needed in terms of environmental impact, safety and economics.

LanguageEnglish
Pages355-363
Number of pages9
JournalJournal of Cleaner Production
Volume222
DOIs
Publication statusPublished - 10 Jun 2019

Fingerprint

Environmental impact
legislation
environmental impact
larva
resource
Proteins
Conversion efficiency
Animals
protein
food
Meats
Manures
Global warming
Natural resources
Potential energy
Land use
dry matter
Fish
Legislation
Resources

Keywords

  • Hermetia illucens
  • Insects
  • Life cycle assessment
  • Resource use efficiency

Cite this

@article{29d9d914e02b49e3930af0b79596219e,
title = "Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact",
abstract = "To meet the projected substantial growth in the global demand for meat, we are challenged to develop additional protein-rich feed ingredients while minimizing the use of natural resources. The larvae of the black soldier fly (BSF) have the capacity to convert low-value organic resources into a high quality protein source for pigs, chickens and fish and as such may increase both the productivity and the efficiency of the food chain. The aim of this study was to assess the environmental opportunities of BSF larvae reared on different sources using up to date literature data on the efficiency of BSF larvae in converting such resources into biomass. The current EU legislative framework was used to classify the various resources for rearing insects. Data of forty articles published until 1 September 2017 were used, reporting on in total 78 (mixtures of) resources used for growing BSF larvae. Data on the resource conversion efficiency on dry matter (DM) and N basis was presented in 11 and 5 studies, evaluating 21 and 13 resources, respectively. Resources studied included food and feed materials (A, n = 8 resources), foods not intended (anymore) for human consumption (B1, n = 4), and residual streams such as food waste (D, n = 2), and animal manure (E, n = 7). Conversion efficiency varied from 1.3 to 32.8{\%} for DM and from 7.4 to 74.8{\%} for N. Using life cycle assessment, our environmental results showed that resources within the legal groups (i.e. A and B1) that are, at the moment, not allowed in EU as animal feed have in general a lower impact in terms of global warming potential, energy use, and land use. On a per kg protein basis, BSF larvae reared on a resource that contains food (e.g. sorghum) and feed (e.g. dried distillers grains with solubles) products generally have higher environmental impacts than conventional feed protein sources (fishmeal and soybean meal). Using insects as feed, therefore, has potential to lower the environmental impact of food production but a careful examination of the resource is needed in terms of environmental impact, safety and economics.",
keywords = "Hermetia illucens, Insects, Life cycle assessment, Resource use efficiency",
author = "G. Bosch and {van Zanten}, H.H.E. and A. Zamprogna and M. Veenenbos and N.P. Meijer and {van der Fels-Klerx}, H.J. and {van Loon}, J.J.A.",
year = "2019",
month = "6",
day = "10",
doi = "10.1016/j.jclepro.2019.02.270",
language = "English",
volume = "222",
pages = "355--363",
journal = "Journal of Cleaner Production",
issn = "0959-6526",
publisher = "Elsevier",

}

Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact. / Bosch, G.; van Zanten, H.H.E.; Zamprogna, A.; Veenenbos, M.; Meijer, N.P.; van der Fels-Klerx, H.J.; van Loon, J.J.A.

In: Journal of Cleaner Production, Vol. 222, 10.06.2019, p. 355-363.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact

AU - Bosch, G.

AU - van Zanten, H.H.E.

AU - Zamprogna, A.

AU - Veenenbos, M.

AU - Meijer, N.P.

AU - van der Fels-Klerx, H.J.

AU - van Loon, J.J.A.

PY - 2019/6/10

Y1 - 2019/6/10

N2 - To meet the projected substantial growth in the global demand for meat, we are challenged to develop additional protein-rich feed ingredients while minimizing the use of natural resources. The larvae of the black soldier fly (BSF) have the capacity to convert low-value organic resources into a high quality protein source for pigs, chickens and fish and as such may increase both the productivity and the efficiency of the food chain. The aim of this study was to assess the environmental opportunities of BSF larvae reared on different sources using up to date literature data on the efficiency of BSF larvae in converting such resources into biomass. The current EU legislative framework was used to classify the various resources for rearing insects. Data of forty articles published until 1 September 2017 were used, reporting on in total 78 (mixtures of) resources used for growing BSF larvae. Data on the resource conversion efficiency on dry matter (DM) and N basis was presented in 11 and 5 studies, evaluating 21 and 13 resources, respectively. Resources studied included food and feed materials (A, n = 8 resources), foods not intended (anymore) for human consumption (B1, n = 4), and residual streams such as food waste (D, n = 2), and animal manure (E, n = 7). Conversion efficiency varied from 1.3 to 32.8% for DM and from 7.4 to 74.8% for N. Using life cycle assessment, our environmental results showed that resources within the legal groups (i.e. A and B1) that are, at the moment, not allowed in EU as animal feed have in general a lower impact in terms of global warming potential, energy use, and land use. On a per kg protein basis, BSF larvae reared on a resource that contains food (e.g. sorghum) and feed (e.g. dried distillers grains with solubles) products generally have higher environmental impacts than conventional feed protein sources (fishmeal and soybean meal). Using insects as feed, therefore, has potential to lower the environmental impact of food production but a careful examination of the resource is needed in terms of environmental impact, safety and economics.

AB - To meet the projected substantial growth in the global demand for meat, we are challenged to develop additional protein-rich feed ingredients while minimizing the use of natural resources. The larvae of the black soldier fly (BSF) have the capacity to convert low-value organic resources into a high quality protein source for pigs, chickens and fish and as such may increase both the productivity and the efficiency of the food chain. The aim of this study was to assess the environmental opportunities of BSF larvae reared on different sources using up to date literature data on the efficiency of BSF larvae in converting such resources into biomass. The current EU legislative framework was used to classify the various resources for rearing insects. Data of forty articles published until 1 September 2017 were used, reporting on in total 78 (mixtures of) resources used for growing BSF larvae. Data on the resource conversion efficiency on dry matter (DM) and N basis was presented in 11 and 5 studies, evaluating 21 and 13 resources, respectively. Resources studied included food and feed materials (A, n = 8 resources), foods not intended (anymore) for human consumption (B1, n = 4), and residual streams such as food waste (D, n = 2), and animal manure (E, n = 7). Conversion efficiency varied from 1.3 to 32.8% for DM and from 7.4 to 74.8% for N. Using life cycle assessment, our environmental results showed that resources within the legal groups (i.e. A and B1) that are, at the moment, not allowed in EU as animal feed have in general a lower impact in terms of global warming potential, energy use, and land use. On a per kg protein basis, BSF larvae reared on a resource that contains food (e.g. sorghum) and feed (e.g. dried distillers grains with solubles) products generally have higher environmental impacts than conventional feed protein sources (fishmeal and soybean meal). Using insects as feed, therefore, has potential to lower the environmental impact of food production but a careful examination of the resource is needed in terms of environmental impact, safety and economics.

KW - Hermetia illucens

KW - Insects

KW - Life cycle assessment

KW - Resource use efficiency

U2 - 10.1016/j.jclepro.2019.02.270

DO - 10.1016/j.jclepro.2019.02.270

M3 - Article

VL - 222

SP - 355

EP - 363

JO - Journal of Cleaner Production

T2 - Journal of Cleaner Production

JF - Journal of Cleaner Production

SN - 0959-6526

ER -