Convergent evolution of immune receptors underpins distinct elicitin recognition in closely related Solanaceous plants

Zhaodan Chen, Fan Liu, Mengzhu Zeng, Lei Wang, Hanmei Liu, Yujing Sun, Lan Wang, Zhichao Zhang, Zhiyuan Chen, Yuanpeng Xu, Mingmei Zhang, Yeqiang Xia, Wenwu Ye, Suomeng Dong, Francine Govers, Yan Wang*, Yuanchao Wang

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)

Abstract

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.

Original languageEnglish
Pages (from-to)1186-1201
Number of pages16
JournalThe Plant Cell
Volume35
Issue number4
DOIs
Publication statusPublished - 29 Mar 2023

Fingerprint

Dive into the research topics of 'Convergent evolution of immune receptors underpins distinct elicitin recognition in closely related Solanaceous plants'. Together they form a unique fingerprint.

Cite this