Abstract
Individual-based models (IBM's) have become a popular tool in ecology during the last ten years. These models have individual animals or plants as basic units and generate patterns of distribution or abundance resulting from the interaction between individuals. This approach has important advantages. To mention few:
This strategy consists of three phases: 'scrutinizing', 'simplifying' and 'synthesizing'. The first step is a thorough analysis of the model behavior with respect to a selected set of parameters ('scrutinizing'). Secondly, similar analyses are done with several simplified versions of the model ('simplifying'). In this step, relationships between state variables or species that may potentially cause incomprehensible behavior, are replaced by fixed values or highly simplified relations. The last step is to explain the differences between the full and the simplified versions and to discuss the results in the light of the existing ecological theory, field patterns or other models ('synthesizing'). It is argued that this way of combining analyses of simple and more elaborate models is a powerful way to gain understanding of complex systems.
- The biological principle that each individual is different can be incorporated, resulting in a higher realism.
- Parameters needed in the models as well as the predicted variables are typically of the type measured by experimental biologists.
- Model behavior is often rather robust to variation in formulation of the processes.
This strategy consists of three phases: 'scrutinizing', 'simplifying' and 'synthesizing'. The first step is a thorough analysis of the model behavior with respect to a selected set of parameters ('scrutinizing'). Secondly, similar analyses are done with several simplified versions of the model ('simplifying'). In this step, relationships between state variables or species that may potentially cause incomprehensible behavior, are replaced by fixed values or highly simplified relations. The last step is to explain the differences between the full and the simplified versions and to discuss the results in the light of the existing ecological theory, field patterns or other models ('synthesizing'). It is argued that this way of combining analyses of simple and more elaborate models is a powerful way to gain understanding of complex systems.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 27 Feb 2002 |
Place of Publication | S.l. |
Print ISBNs | 9789058085283 |
DOIs | |
Publication status | Published - 27 Feb 2002 |
Keywords
- aquatic plants
- aquatic animals
- fishes
- ecology
- models
- communities
- aquatic ecosystems