TY - JOUR
T1 - Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium
AU - van Eekert, M.H.A.
AU - Schroder, T.J.
AU - van Rhee, A.
AU - Stams, A.J.M.
AU - Schraa, G.
AU - Field, J.A.
PY - 2001
Y1 - 2001
N2 - The ability of granular methanogenic sludge to dechlorinate chloroethenes was investigated with unadapted sludge from an upflow anaerobic sludge blanket (UASB) reactor fed with methanol. The sludge degraded chlorinated ethenes, but the degradation rates were low. The addition of primary substrate was necessary to sustain dechlorination. The dechlorinating activity seemed to be constitutively present in the anaerobic bacteria. Usually, one chlorine atom was removed via reductive hydrogenolysis. Only trichloroethene (TCE) was converted to substantial amounts of vinylchloride (VC). 1,1-Dichloroethene (1,1DCE) was observed to be an important intermediate in the dechlorination by unadapted granular sludge, although previously this compound had not been commonly observed. Furthermore, the dechlorination of 1,1DCE was faster than the dechlorination of the other chloroethenes. Copyright ? 2001 Elsevier Science Ltd. The ability of granular methanogenic sludge to dechlorinate chloroethenes was investigated with unadapted sludge from an upflow anaerobic sludge blanket (UASB) reactor fed with methanol. The sludge degraded chlorinated ethenes, but the degradation rates were low. The addition of primary substrate was necessary to sustain dechlorination. The dechlorinating activity seemed to be constitutively present in the anaerobic bacteria. Usually, one chlorine atom was removed via reductive hydrogenolysis. Only trichloroethene (TCE) was converted to substantial amounts of vinylchloride (VC). 1,1-Dichloroethene (1,1DCE) was observed to be an important intermediate in the dechlorination by unadapted granular sludge, although previously this compound had not been commonly observed. Furthermore, the dechlorination of 1,1DCE was faster than the dechlorination of the other chloroethenes.
AB - The ability of granular methanogenic sludge to dechlorinate chloroethenes was investigated with unadapted sludge from an upflow anaerobic sludge blanket (UASB) reactor fed with methanol. The sludge degraded chlorinated ethenes, but the degradation rates were low. The addition of primary substrate was necessary to sustain dechlorination. The dechlorinating activity seemed to be constitutively present in the anaerobic bacteria. Usually, one chlorine atom was removed via reductive hydrogenolysis. Only trichloroethene (TCE) was converted to substantial amounts of vinylchloride (VC). 1,1-Dichloroethene (1,1DCE) was observed to be an important intermediate in the dechlorination by unadapted granular sludge, although previously this compound had not been commonly observed. Furthermore, the dechlorination of 1,1DCE was faster than the dechlorination of the other chloroethenes. Copyright ? 2001 Elsevier Science Ltd. The ability of granular methanogenic sludge to dechlorinate chloroethenes was investigated with unadapted sludge from an upflow anaerobic sludge blanket (UASB) reactor fed with methanol. The sludge degraded chlorinated ethenes, but the degradation rates were low. The addition of primary substrate was necessary to sustain dechlorination. The dechlorinating activity seemed to be constitutively present in the anaerobic bacteria. Usually, one chlorine atom was removed via reductive hydrogenolysis. Only trichloroethene (TCE) was converted to substantial amounts of vinylchloride (VC). 1,1-Dichloroethene (1,1DCE) was observed to be an important intermediate in the dechlorination by unadapted granular sludge, although previously this compound had not been commonly observed. Furthermore, the dechlorination of 1,1DCE was faster than the dechlorination of the other chloroethenes.
KW - Chlorinated ethenes
KW - Dechlorination
KW - Granular methanogenic sludge
KW - Reductive hydrogenolysis
U2 - 10.1016/S0960-8524(00)00149-8
DO - 10.1016/S0960-8524(00)00149-8
M3 - Article
SN - 0960-8524
VL - 77
SP - 163
EP - 170
JO - Bioresource Technology
JF - Bioresource Technology
ER -