Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics

E. van der Grinten, M.G. Pikkemaat, E.J. Van den Brandhof, G.J. Stroomberg, M.H.S. Kraak

    Research output: Contribution to journalArticleAcademicpeer-review

    108 Citations (Scopus)


    Antibiotics may affect both primary producers and decomposers, potentially disrupting ecosystem processes. Hence, it is essential to assess the impact of antibiotics on aquatic ecosystems. The aim of the present study was therefore to evaluate the potential of a recently developed test for detecting antibiotics in animal tissue, the Nouws Antibiotic Test (NAT), as a sensitive bioassay to assess the effects of antibiotics in water. To this purpose, we determined the toxicity of sulphamethoxazole, trimethoprim, flumequine, tylosin, streptomycin, and oxytetracycline, using the NAT adapted for water exposure. The sensitivity of the NAT was compared to that of bioassays with bacteria (Microtox), cyanobacteria and green algae. In the Microtox test with Vibrio fischeri as test organism, no effects were observed for any of the test compounds. For three of the six antibiotics tested, the cyanobacteria were more vulnerable than the green algae when using photosynthetic efficiency as an endpoint. The lowest EC50 values for four out of six tested antibiotics were obtained using the NAT bacterial bioassay. The bacterial plate system responded to antibiotics at concentrations in the mu g L-1 and lower mg L-1 range and, moreover, each plate proved to be specifically sensitive to the antibiotics group it was designed for. It is concluded that the NAT bioassay adapted for water exposure is a sensitive test to determine the presence of antibiotics in water. The ability of this test to distinguish five major antibiotic groups is a very strong additional value.
    Original languageEnglish
    Pages (from-to)1-6
    Issue number1
    Publication statusPublished - 2010


    • tandem mass-spectrometry
    • environmental risk-assessment
    • aquatic environment
    • waste-water
    • fluoroquinolone antibiotics
    • antibacterial agents
    • antimicrobial agents
    • treatment plants
    • ecotoxicity test
    • vibrio-fischeri

    Fingerprint Dive into the research topics of 'Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics'. Together they form a unique fingerprint.

    Cite this