Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets

A.H. te Linde, J.C.J.H. Aerts, R.T.W.L. Hurkmans, M. Eberle

Research output: Contribution to journalArticleAcademicpeer-review

50 Citations (Scopus)

Abstract

Due to the growing wish and necessity to simulate the possible effects of climate change on the discharge regime on large rivers such as the Rhine in Europe, there is a need for well performing hydrological models that can be applied in climate change scenario studies. There exists large variety in available models and there is an ongoing debate in research on rainfall-runoff modelling on whether or not physically based distributed models better represent observed discharges than conceptual lumped model approaches do. In addition, it is argued that Land Surface Models (LSMs) carry the potential to accurately estimate hydrological partitioning, because they solve the coupled water and energy balance. In this paper, the hydrological models HBV and VIC were compared for the Rhine basin by testing their performance in simulating discharge. Overall, the semi-distributed conceptual HBV model performed much better than the distributed land surface model VIC (E=0.62, r2=0.65 vs. E=0.31, r2=0.54 at Lobith). It is argued here that even for a well-documented river basin such as the Rhine, more complex modelling does not automatically lead to better results. Moreover, it is concluded that meteorological forcing data has a considerable influence on model performance, irrespectively to the type of model structure and the need for ground-based meteorological measurements is emphasized.
Original languageEnglish
Pages (from-to)943-957
JournalHydrology and Earth System Sciences
Volume12
Issue number3
DOIs
Publication statusPublished - 2008

Keywords

  • watershed thermodynamics
  • alternative blueprint
  • generation processes
  • hydrological model
  • unifying framework
  • uncertainty
  • variability
  • parameters
  • catchment
  • system

Fingerprint

Dive into the research topics of 'Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets'. Together they form a unique fingerprint.

Cite this