Abstract
Background
Association mapping is a statistical approach combining phenotypic traits and genetic diversity in natural populations with the goal of correlating the variation present at phenotypic and allelic levels. It is essential to separate the true effect of genetic variation from other confounding factors, such as adaptation to different uses and geographical locations. The rapid availability of large datasets makes it necessary to explore statistical methods that can be computationally less intensive and more flexible for data exploration.
Methodology/Principal Findings
A core collection of 168 Brassica rapa accessions of different morphotypes and origins was explored to find genetic association between markers and metabolites: tocopherols, carotenoids, chlorophylls and folate. A widely used linear model with modifications to account for population structure and kinship was followed for association mapping. In addition, a machine learning algorithm called Random Forest (RF) was used as a comparison. Comparison of results across methods resulted in the selection of a set of significant markers as promising candidates for further work. This set of markers associated to the metabolites can potentially be applied for the selection of genotypes with elevated levels of these metabolites.
Conclusions/Significance
The incorporation of the kinship correction into the association model did not reduce the number of significantly associated markers. However incorporation of the STRUCTURE correction (Q matrix) in the linear regression model greatly reduced the number of significantly associated markers. Additionally, our results demonstrate that RF is an interesting complementary method with added value in association studies in plants, which is illustrated by the overlap in markers identified using RF and a linear mixed model with correction for kinship and population structure. Several markers that were selected in RF and in the models with correction for kinship, but not for population structure, were also identified as QTLs in two bi-parental DH populations.
Original language | English |
---|---|
Article number | e19624 |
Journal | PLoS ONE |
Volume | 6 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- multilocus genotype data
- genome-wide association
- population-structure
- random forests
- linkage disequilibrium
- flowering time
- inference
- classification
- resistance
- traits