Comparative genomics and metabolic profiling of the genus Lysobacter

Irene de Bruijn*, Xu Cheng, Victor de Jager, Ruth Gómez Expósito, Jeramie Watrous, Nrupali Patel, Joeke Postma, P.C. Dorrestein, Donald Kobayashi, Jos M. Raaijmakers

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

102 Citations (Scopus)

Abstract

Background: Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses. Results: Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five genomes, whereas type VI secretion systems were only found in L. enzymogenes and L. gummosus. Genes encoding components of the flagellar apparatus were absent in the two sequenced L. antibioticus strains. The genomes contained a large number of genes encoding extracellular enzymes including chitinases, glucanases and peptidases. Various nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clusters encoding putative bioactive metabolites were identified but only few of these clusters were shared between the different species. Metabolic profiling by imaging mass spectrometry complemented, in part, the in silico genome analyses and allowed visualisation of the spatial distribution patterns of several secondary metabolites produced by or induced in Lysobacter species during interactions with the soil-borne fungus Rhizoctonia solani. Conclusions: Our work shows that mining the genomes of Lysobacter species in combination with metabolic profiling provides novel insights into the genomic and metabolic potential of this widely distributed but understudied and versatile bacterial genus.

Original languageEnglish
Article number991
Number of pages16
JournalBMC Genomics
Volume16
Issue number1
DOIs
Publication statusPublished - 2015

Keywords

  • Comparative genomics
  • Lysobacter
  • Mass spectrometry imaging
  • Microbial interactions
  • Nonribosomal peptide synthesis

Fingerprint

Dive into the research topics of 'Comparative genomics and metabolic profiling of the genus Lysobacter'. Together they form a unique fingerprint.

Cite this