Abstract
Background: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.
Results: Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.
Conclusions: The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants
Original language | English |
---|---|
Article number | R40 |
Number of pages | 15 |
Journal | Genome Biology |
Volume | 12 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- induced systemic resistance
- plant-root colonization
- cell-wall
- aspergillus-nidulans
- eukaryotic genomes
- hypocrea-jecorina
- neurospora-crassa
- hydrophobin gene
- pathogenic fungi
- dna-sequences