TY - JOUR
T1 - Combining lanthanum-modified bentonite (LMB) and submerged macrophytes alleviates water quality deterioration in the presence of omni-benthivorous fish
AU - Han, Yanqing
AU - Jeppesen, Erik
AU - Lürling, Miquel
AU - Zhang, You
AU - Ma, Tingting
AU - Li, Wei
AU - Chen, Kunquan
AU - Li, Kuanyi
PY - 2022/7/15
Y1 - 2022/7/15
N2 - Bioturbation by omni-benthivorous fish often causes sediment resuspension and internal nutrient loading, which boosts phytoplankton growth and may lead to a shift of clear water lakes to a turbid state. Removal of large-sized omni-benthivorous individuals is a lake restoration measure that may revert lakes from a turbid to a clear water state, yet the rapid reproduction of small omni-benthivorous fish in tropical and subtropical shallow lakes may impede such lake recovery. In lake restoration, also a combination of lanthanum-modified bentonite (LMB) and planting submerged macrophytes has been used that may synergistically improve lake water quality. How the combined effect works in the presence of small omni-benthivorous fish has not been studied, which is needed given the high abundances of small omni-benthivorous fish in (sub)tropical lakes. We conducted a two-by-two factorial mesocosm experiment with and without the submerged macrophytes Vallisneria natans and with and without LMB, all in the presence of small crucian carp. At the end of the experiment, turbidity in the V. natans, LMB and combined LMB + V. natans treatments had decreased by 0.8%, 30.3% and 30.9%, respectively, compared with the controls. In addition, the nitrogen (N) and phosphorus (P) release from the sediment in the combined LMB + V. natans treatments had decreased substantially, by 97.4% and 94.3%, respectively, compared with the control. These N and P fluxes were also significantly lower in the combined LMB + V. natans treatments than in the sole LMB treatment (88.1% and 82.3%) or the V. natans treatment (93.2% and 90.3%). Cyanobacteria in the overlying water in the combined LMB + V. natans treatments significantly decreased by 84.1%, 63.5% and 37.0%, respectively, compared with the control and the sole LMB and V. natans treatments. Our results show that LMB and submerged macrophytes complement each other in effectively improving the water quality, even in the presence of small omni-benthivorous fish.
AB - Bioturbation by omni-benthivorous fish often causes sediment resuspension and internal nutrient loading, which boosts phytoplankton growth and may lead to a shift of clear water lakes to a turbid state. Removal of large-sized omni-benthivorous individuals is a lake restoration measure that may revert lakes from a turbid to a clear water state, yet the rapid reproduction of small omni-benthivorous fish in tropical and subtropical shallow lakes may impede such lake recovery. In lake restoration, also a combination of lanthanum-modified bentonite (LMB) and planting submerged macrophytes has been used that may synergistically improve lake water quality. How the combined effect works in the presence of small omni-benthivorous fish has not been studied, which is needed given the high abundances of small omni-benthivorous fish in (sub)tropical lakes. We conducted a two-by-two factorial mesocosm experiment with and without the submerged macrophytes Vallisneria natans and with and without LMB, all in the presence of small crucian carp. At the end of the experiment, turbidity in the V. natans, LMB and combined LMB + V. natans treatments had decreased by 0.8%, 30.3% and 30.9%, respectively, compared with the controls. In addition, the nitrogen (N) and phosphorus (P) release from the sediment in the combined LMB + V. natans treatments had decreased substantially, by 97.4% and 94.3%, respectively, compared with the control. These N and P fluxes were also significantly lower in the combined LMB + V. natans treatments than in the sole LMB treatment (88.1% and 82.3%) or the V. natans treatment (93.2% and 90.3%). Cyanobacteria in the overlying water in the combined LMB + V. natans treatments significantly decreased by 84.1%, 63.5% and 37.0%, respectively, compared with the control and the sole LMB and V. natans treatments. Our results show that LMB and submerged macrophytes complement each other in effectively improving the water quality, even in the presence of small omni-benthivorous fish.
KW - Disturbance
KW - Phoslock®
KW - Shallow lakes
KW - Small crucian carp
KW - Vallisneria natans
U2 - 10.1016/j.jenvman.2022.115036
DO - 10.1016/j.jenvman.2022.115036
M3 - Article
AN - SCOPUS:85127855893
SN - 0301-4797
VL - 314
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 115036
ER -