Clustering of oil droplets in o/w emulsions enhances perception of oil-related sensory attributes

P.L. Fuhrmann, Laura Kalisvaart, G. Sala, E. Scholten, M.A. Stieger*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

The sensory perception of o/w emulsions is determined by their structure and physicochemical properties. The aims of this study were (a) to determine the influence of oil droplet clustering in o/w emulsions on sensory perception and (b) to link their sensory attributes to rheological, tribological and structural properties. Clustered emulsions were prepared by combining o/w emulsions stabilised by different sets of emulsifiers: (a) positively-charged gelatine and negatively-charged whey protein (WPI), and (b) positively-charged gelatine and negatively-charged diacetyl tartaric acid ester of mono- and diglycerides (DATEM). Oil droplet clusters ranging in diameter from 1 to 50 μm were obtained. The difference in charge density between gelatine- and DATEM-stabilised oil droplets was higher than that between gelatine- and WPI-stabilised droplets. This difference allowed to alter the interaction strength within oil droplet clusters. The sensory perception of clustered emulsions was quantified using the Rate-All-That-Apply (RATA) methodology with untrained subjects (n = 83). Participants assessed o/w emulsions varying in cluster size (1 μm–50 μm), cluster strength (tuned by changing the emulsifier-pairs), and single droplet emulsions with and without adjusted viscosity, as well as a reference emulsion with large single droplets (comparable in size to emulsions with large clusters). Creaminess and thickness intensities were significantly higher for clustered o/w emulsions compared to that of single droplet o/w emulsions with the same oil content and similar oil droplet/cluster size. With increasing cluster size, creaminess and thickness intensities increased significantly for hetero-aggregated clusters with weak interactions (gelatine-whey protein). When cluster interactions were stronger (gelatine-DATEM), creaminess intensity increased to a lesser extent and grittiness intensity increased considerably. Thickness and creaminess were strongly correlated to the rheological (e.g. consistency) and tribological properties (e.g. fiction coefficient at 10 mm/s) of o/w emulsions with clustered oil droplets. Grittiness and fattiness were strongly correlated to the tribological properties (slope of mixed regime) of o/w emulsions and their interactions with saliva. We conclude that clustering of oil droplets in o/w emulsions by hetero-aggregation allows to enhance the sensory perception of fat-related attributes by tuning rheological and tribological properties, and provides an effective method to structure liquid foods to obtain specific sensory properties.
Original languageEnglish
Article number105215
JournalFood Hydrocolloids
Volume97
DOIs
Publication statusPublished - Dec 2019

Fingerprint

Emulsions
droplets
emulsions
Cluster Analysis
sensory properties
Oils
oils
gelatin
Monoglycerides
Diacetyl
tartaric acid
diacetyl
monoacylglycerols
Diglycerides
diacylglycerols
whey protein
Esters
esters
emulsifiers
Proteins

Keywords

  • o/w emulsions
  • Sensory perception
  • Oil droplet clustering
  • creaminess
  • Saliva
  • Lubrication

Cite this

@article{0acb11af43af4f099eb53fcb27ac8294,
title = "Clustering of oil droplets in o/w emulsions enhances perception of oil-related sensory attributes",
abstract = "The sensory perception of o/w emulsions is determined by their structure and physicochemical properties. The aims of this study were (a) to determine the influence of oil droplet clustering in o/w emulsions on sensory perception and (b) to link their sensory attributes to rheological, tribological and structural properties. Clustered emulsions were prepared by combining o/w emulsions stabilised by different sets of emulsifiers: (a) positively-charged gelatine and negatively-charged whey protein (WPI), and (b) positively-charged gelatine and negatively-charged diacetyl tartaric acid ester of mono- and diglycerides (DATEM). Oil droplet clusters ranging in diameter from 1 to 50 μm were obtained. The difference in charge density between gelatine- and DATEM-stabilised oil droplets was higher than that between gelatine- and WPI-stabilised droplets. This difference allowed to alter the interaction strength within oil droplet clusters. The sensory perception of clustered emulsions was quantified using the Rate-All-That-Apply (RATA) methodology with untrained subjects (n = 83). Participants assessed o/w emulsions varying in cluster size (1 μm–50 μm), cluster strength (tuned by changing the emulsifier-pairs), and single droplet emulsions with and without adjusted viscosity, as well as a reference emulsion with large single droplets (comparable in size to emulsions with large clusters). Creaminess and thickness intensities were significantly higher for clustered o/w emulsions compared to that of single droplet o/w emulsions with the same oil content and similar oil droplet/cluster size. With increasing cluster size, creaminess and thickness intensities increased significantly for hetero-aggregated clusters with weak interactions (gelatine-whey protein). When cluster interactions were stronger (gelatine-DATEM), creaminess intensity increased to a lesser extent and grittiness intensity increased considerably. Thickness and creaminess were strongly correlated to the rheological (e.g. consistency) and tribological properties (e.g. fiction coefficient at 10 mm/s) of o/w emulsions with clustered oil droplets. Grittiness and fattiness were strongly correlated to the tribological properties (slope of mixed regime) of o/w emulsions and their interactions with saliva. We conclude that clustering of oil droplets in o/w emulsions by hetero-aggregation allows to enhance the sensory perception of fat-related attributes by tuning rheological and tribological properties, and provides an effective method to structure liquid foods to obtain specific sensory properties.",
keywords = "o/w emulsions, Sensory perception, Oil droplet clustering, creaminess, Saliva, Lubrication",
author = "P.L. Fuhrmann and Laura Kalisvaart and G. Sala and E. Scholten and M.A. Stieger",
year = "2019",
month = "12",
doi = "10.1016/j.foodhyd.2019.105215",
language = "English",
volume = "97",
journal = "Food Hydrocolloids",
issn = "0268-005X",
publisher = "Elsevier",

}

TY - JOUR

T1 - Clustering of oil droplets in o/w emulsions enhances perception of oil-related sensory attributes

AU - Fuhrmann, P.L.

AU - Kalisvaart, Laura

AU - Sala, G.

AU - Scholten, E.

AU - Stieger, M.A.

PY - 2019/12

Y1 - 2019/12

N2 - The sensory perception of o/w emulsions is determined by their structure and physicochemical properties. The aims of this study were (a) to determine the influence of oil droplet clustering in o/w emulsions on sensory perception and (b) to link their sensory attributes to rheological, tribological and structural properties. Clustered emulsions were prepared by combining o/w emulsions stabilised by different sets of emulsifiers: (a) positively-charged gelatine and negatively-charged whey protein (WPI), and (b) positively-charged gelatine and negatively-charged diacetyl tartaric acid ester of mono- and diglycerides (DATEM). Oil droplet clusters ranging in diameter from 1 to 50 μm were obtained. The difference in charge density between gelatine- and DATEM-stabilised oil droplets was higher than that between gelatine- and WPI-stabilised droplets. This difference allowed to alter the interaction strength within oil droplet clusters. The sensory perception of clustered emulsions was quantified using the Rate-All-That-Apply (RATA) methodology with untrained subjects (n = 83). Participants assessed o/w emulsions varying in cluster size (1 μm–50 μm), cluster strength (tuned by changing the emulsifier-pairs), and single droplet emulsions with and without adjusted viscosity, as well as a reference emulsion with large single droplets (comparable in size to emulsions with large clusters). Creaminess and thickness intensities were significantly higher for clustered o/w emulsions compared to that of single droplet o/w emulsions with the same oil content and similar oil droplet/cluster size. With increasing cluster size, creaminess and thickness intensities increased significantly for hetero-aggregated clusters with weak interactions (gelatine-whey protein). When cluster interactions were stronger (gelatine-DATEM), creaminess intensity increased to a lesser extent and grittiness intensity increased considerably. Thickness and creaminess were strongly correlated to the rheological (e.g. consistency) and tribological properties (e.g. fiction coefficient at 10 mm/s) of o/w emulsions with clustered oil droplets. Grittiness and fattiness were strongly correlated to the tribological properties (slope of mixed regime) of o/w emulsions and their interactions with saliva. We conclude that clustering of oil droplets in o/w emulsions by hetero-aggregation allows to enhance the sensory perception of fat-related attributes by tuning rheological and tribological properties, and provides an effective method to structure liquid foods to obtain specific sensory properties.

AB - The sensory perception of o/w emulsions is determined by their structure and physicochemical properties. The aims of this study were (a) to determine the influence of oil droplet clustering in o/w emulsions on sensory perception and (b) to link their sensory attributes to rheological, tribological and structural properties. Clustered emulsions were prepared by combining o/w emulsions stabilised by different sets of emulsifiers: (a) positively-charged gelatine and negatively-charged whey protein (WPI), and (b) positively-charged gelatine and negatively-charged diacetyl tartaric acid ester of mono- and diglycerides (DATEM). Oil droplet clusters ranging in diameter from 1 to 50 μm were obtained. The difference in charge density between gelatine- and DATEM-stabilised oil droplets was higher than that between gelatine- and WPI-stabilised droplets. This difference allowed to alter the interaction strength within oil droplet clusters. The sensory perception of clustered emulsions was quantified using the Rate-All-That-Apply (RATA) methodology with untrained subjects (n = 83). Participants assessed o/w emulsions varying in cluster size (1 μm–50 μm), cluster strength (tuned by changing the emulsifier-pairs), and single droplet emulsions with and without adjusted viscosity, as well as a reference emulsion with large single droplets (comparable in size to emulsions with large clusters). Creaminess and thickness intensities were significantly higher for clustered o/w emulsions compared to that of single droplet o/w emulsions with the same oil content and similar oil droplet/cluster size. With increasing cluster size, creaminess and thickness intensities increased significantly for hetero-aggregated clusters with weak interactions (gelatine-whey protein). When cluster interactions were stronger (gelatine-DATEM), creaminess intensity increased to a lesser extent and grittiness intensity increased considerably. Thickness and creaminess were strongly correlated to the rheological (e.g. consistency) and tribological properties (e.g. fiction coefficient at 10 mm/s) of o/w emulsions with clustered oil droplets. Grittiness and fattiness were strongly correlated to the tribological properties (slope of mixed regime) of o/w emulsions and their interactions with saliva. We conclude that clustering of oil droplets in o/w emulsions by hetero-aggregation allows to enhance the sensory perception of fat-related attributes by tuning rheological and tribological properties, and provides an effective method to structure liquid foods to obtain specific sensory properties.

KW - o/w emulsions

KW - Sensory perception

KW - Oil droplet clustering

KW - creaminess

KW - Saliva

KW - Lubrication

U2 - 10.1016/j.foodhyd.2019.105215

DO - 10.1016/j.foodhyd.2019.105215

M3 - Article

VL - 97

JO - Food Hydrocolloids

JF - Food Hydrocolloids

SN - 0268-005X

M1 - 105215

ER -