Clustering of oil droplets in o/w emulsions: Controlling cluster size and interaction strength

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

Clustering of oil droplets changes the rheological properties of oil-in-water (o/w) emulsions and can be used as a tool to structure foods. The aim of this study was to manipulate both oil droplet cluster size and cluster strength in liquid o/w emulsions, and to investigate the effect of these parameters on the rheological properties. Clustered emulsions were prepared using three different methods: (i) clustering by protein-proanthocyanidin interactions, (ii) clustering by hetero-aggregation of oppositely-charged emulsion droplets, and (iii) enzymatic clustering of protein-stabilised droplets using transglutaminase. Clustering by protein-proanthocyanidin interactions allowed to control oil droplet cluster size from 1 to 140 μm. Clusters decreased in size upon both an increase and decrease in pH, but were stable against changes in ionic strength. Hetero-aggregation of oppositely-charged oil droplets (gelatine/whey protein and gelatine/DATEM) allowed to control cluster size from 1 to 40 μm. Clusters showed a strong decrease in size in response to changes in pH and a small decrease in size with increasing ionic strength. Enzymatic clustering did not allow to control cluster size. Cluster strength of proanthocyanidin-stabilised clusters was found to be higher than that of hetero-aggregated clusters. Stabilisation of clusters was likely induced by different protein-proanthocyanidin interactions such as H-bridges, π-π stacking, and hydrophobic interactions, whereas hetero-aggregation is based on electrostatic interactions. Upon clustering, emulsion viscosity increased by up to three orders of magnitude. We conclude that protein-proanthocyanidin interactions and hetero-aggregation are effective methods to tune droplet cluster size and strength in o/w emulsions, and that cluster size and interaction strength control the rheological properties of o/w emulsions with clustered oil droplets.

Original languageEnglish
Pages (from-to)537-547
Number of pages11
JournalFood Research International
Volume122
DOIs
Publication statusPublished - 1 Aug 2019

Fingerprint

Emulsions
droplets
emulsions
Cluster Analysis
Oils
proanthocyanidins
oils
Water
rheological properties
ionic strength
gelatin
proteins
Proteins
Osmolar Concentration
electrostatic interactions
protein-glutamine gamma-glutamyltransferase
hydrophobic bonding
Transglutaminases
whey protein
Static Electricity

Keywords

  • Droplet interactions
  • O/w emulsions
  • Oil droplet clustering
  • Polyphenols

Cite this

@article{0160609b5f4d4f9180d36a6467d91eef,
title = "Clustering of oil droplets in o/w emulsions: Controlling cluster size and interaction strength",
abstract = "Clustering of oil droplets changes the rheological properties of oil-in-water (o/w) emulsions and can be used as a tool to structure foods. The aim of this study was to manipulate both oil droplet cluster size and cluster strength in liquid o/w emulsions, and to investigate the effect of these parameters on the rheological properties. Clustered emulsions were prepared using three different methods: (i) clustering by protein-proanthocyanidin interactions, (ii) clustering by hetero-aggregation of oppositely-charged emulsion droplets, and (iii) enzymatic clustering of protein-stabilised droplets using transglutaminase. Clustering by protein-proanthocyanidin interactions allowed to control oil droplet cluster size from 1 to 140 μm. Clusters decreased in size upon both an increase and decrease in pH, but were stable against changes in ionic strength. Hetero-aggregation of oppositely-charged oil droplets (gelatine/whey protein and gelatine/DATEM) allowed to control cluster size from 1 to 40 μm. Clusters showed a strong decrease in size in response to changes in pH and a small decrease in size with increasing ionic strength. Enzymatic clustering did not allow to control cluster size. Cluster strength of proanthocyanidin-stabilised clusters was found to be higher than that of hetero-aggregated clusters. Stabilisation of clusters was likely induced by different protein-proanthocyanidin interactions such as H-bridges, π-π stacking, and hydrophobic interactions, whereas hetero-aggregation is based on electrostatic interactions. Upon clustering, emulsion viscosity increased by up to three orders of magnitude. We conclude that protein-proanthocyanidin interactions and hetero-aggregation are effective methods to tune droplet cluster size and strength in o/w emulsions, and that cluster size and interaction strength control the rheological properties of o/w emulsions with clustered oil droplets.",
keywords = "Droplet interactions, O/w emulsions, Oil droplet clustering, Polyphenols",
author = "Fuhrmann, {Philipp L.} and Guido Sala and Markus Stieger and Elke Scholten",
year = "2019",
month = "8",
day = "1",
doi = "10.1016/j.foodres.2019.04.027",
language = "English",
volume = "122",
pages = "537--547",
journal = "Food Research International",
issn = "0963-9969",
publisher = "Elsevier",

}

TY - JOUR

T1 - Clustering of oil droplets in o/w emulsions: Controlling cluster size and interaction strength

AU - Fuhrmann, Philipp L.

AU - Sala, Guido

AU - Stieger, Markus

AU - Scholten, Elke

PY - 2019/8/1

Y1 - 2019/8/1

N2 - Clustering of oil droplets changes the rheological properties of oil-in-water (o/w) emulsions and can be used as a tool to structure foods. The aim of this study was to manipulate both oil droplet cluster size and cluster strength in liquid o/w emulsions, and to investigate the effect of these parameters on the rheological properties. Clustered emulsions were prepared using three different methods: (i) clustering by protein-proanthocyanidin interactions, (ii) clustering by hetero-aggregation of oppositely-charged emulsion droplets, and (iii) enzymatic clustering of protein-stabilised droplets using transglutaminase. Clustering by protein-proanthocyanidin interactions allowed to control oil droplet cluster size from 1 to 140 μm. Clusters decreased in size upon both an increase and decrease in pH, but were stable against changes in ionic strength. Hetero-aggregation of oppositely-charged oil droplets (gelatine/whey protein and gelatine/DATEM) allowed to control cluster size from 1 to 40 μm. Clusters showed a strong decrease in size in response to changes in pH and a small decrease in size with increasing ionic strength. Enzymatic clustering did not allow to control cluster size. Cluster strength of proanthocyanidin-stabilised clusters was found to be higher than that of hetero-aggregated clusters. Stabilisation of clusters was likely induced by different protein-proanthocyanidin interactions such as H-bridges, π-π stacking, and hydrophobic interactions, whereas hetero-aggregation is based on electrostatic interactions. Upon clustering, emulsion viscosity increased by up to three orders of magnitude. We conclude that protein-proanthocyanidin interactions and hetero-aggregation are effective methods to tune droplet cluster size and strength in o/w emulsions, and that cluster size and interaction strength control the rheological properties of o/w emulsions with clustered oil droplets.

AB - Clustering of oil droplets changes the rheological properties of oil-in-water (o/w) emulsions and can be used as a tool to structure foods. The aim of this study was to manipulate both oil droplet cluster size and cluster strength in liquid o/w emulsions, and to investigate the effect of these parameters on the rheological properties. Clustered emulsions were prepared using three different methods: (i) clustering by protein-proanthocyanidin interactions, (ii) clustering by hetero-aggregation of oppositely-charged emulsion droplets, and (iii) enzymatic clustering of protein-stabilised droplets using transglutaminase. Clustering by protein-proanthocyanidin interactions allowed to control oil droplet cluster size from 1 to 140 μm. Clusters decreased in size upon both an increase and decrease in pH, but were stable against changes in ionic strength. Hetero-aggregation of oppositely-charged oil droplets (gelatine/whey protein and gelatine/DATEM) allowed to control cluster size from 1 to 40 μm. Clusters showed a strong decrease in size in response to changes in pH and a small decrease in size with increasing ionic strength. Enzymatic clustering did not allow to control cluster size. Cluster strength of proanthocyanidin-stabilised clusters was found to be higher than that of hetero-aggregated clusters. Stabilisation of clusters was likely induced by different protein-proanthocyanidin interactions such as H-bridges, π-π stacking, and hydrophobic interactions, whereas hetero-aggregation is based on electrostatic interactions. Upon clustering, emulsion viscosity increased by up to three orders of magnitude. We conclude that protein-proanthocyanidin interactions and hetero-aggregation are effective methods to tune droplet cluster size and strength in o/w emulsions, and that cluster size and interaction strength control the rheological properties of o/w emulsions with clustered oil droplets.

KW - Droplet interactions

KW - O/w emulsions

KW - Oil droplet clustering

KW - Polyphenols

U2 - 10.1016/j.foodres.2019.04.027

DO - 10.1016/j.foodres.2019.04.027

M3 - Article

VL - 122

SP - 537

EP - 547

JO - Food Research International

JF - Food Research International

SN - 0963-9969

ER -