TY - JOUR
T1 - Clean production of microalgae high-value lipid fraction
T2 - Influence of different pretreatments on chemical and cytotoxic profiles of Chlorella vulgaris supercritical extracts and life cycle assessment
AU - Vladic, Jelena
AU - Radman, Sanja
AU - Zizak, Zeljko
AU - Besu, Irina
AU - Jerkovic, Igor
AU - Speranza, Lais Galileu
AU - Hala, Ahmad Furqan
AU - Kovacevic, Strahinja
AU - Perreira, Hugo
AU - Gouveia, Luisa
PY - 2025/2/1
Y1 - 2025/2/1
N2 - Microalgae have emerged as a promising natural resource rich in bioactive compounds. Health-beneficial properties of microalgae, coupled with advantageous characteristics such as high biomass productivity, adaptability, robustness, and carbon dioxide mitigation, position them as a viable solution for global sustainable food production. This study explored clean and environmentally friendly processes to enhance the recovery of lipid bioactive fractions. Microwave (MW), enzymatic (ENZ), and ultrasound (US) pretreatments were applied to improve environmentally friendly extraction of lipid-based components using supercritical CO2. The effects of these pretreatments on extraction yield, chemical profiles, and cytotoxic properties of Chlorella vulgaris (Cv) and smooth C. vulgaris (sCv) extracts were investigated. Additionally, a Life Cycle Assessment (LCA) was conducted to evaluate environmental impacts. MW pretreatment achieved the highest yield increases, from 2.58 times (Cv) to 3.15 times (sCv). UHPLC-ESI-HRMS analysis revealed shifts in the distribution of pigments and derivatives caused by pretreatments, with ENZ extracts showing the most pronounced changes: pigments increased from 9.24% (control Cv) to 40.92% (Cv) and from 12.52% (control sCv) to 71.12% (sCv). Cv extracts exhibited greater activity against MDA-MB-453 cells, while sCv extracts from US pretreatment demonstrated the strongest effect on HeLa cells. The LCA indicated reduced environmental impacts of the pretreatment-enhanced processes up to 65% compared to the control. A scenario analysis was presented to show further possible impact reduction by recirculating the CO2 solvent and substituting the energy source. These findings provide valuable insights into sustainable and scalable green processes for recovering microalgal bioactive components.
AB - Microalgae have emerged as a promising natural resource rich in bioactive compounds. Health-beneficial properties of microalgae, coupled with advantageous characteristics such as high biomass productivity, adaptability, robustness, and carbon dioxide mitigation, position them as a viable solution for global sustainable food production. This study explored clean and environmentally friendly processes to enhance the recovery of lipid bioactive fractions. Microwave (MW), enzymatic (ENZ), and ultrasound (US) pretreatments were applied to improve environmentally friendly extraction of lipid-based components using supercritical CO2. The effects of these pretreatments on extraction yield, chemical profiles, and cytotoxic properties of Chlorella vulgaris (Cv) and smooth C. vulgaris (sCv) extracts were investigated. Additionally, a Life Cycle Assessment (LCA) was conducted to evaluate environmental impacts. MW pretreatment achieved the highest yield increases, from 2.58 times (Cv) to 3.15 times (sCv). UHPLC-ESI-HRMS analysis revealed shifts in the distribution of pigments and derivatives caused by pretreatments, with ENZ extracts showing the most pronounced changes: pigments increased from 9.24% (control Cv) to 40.92% (Cv) and from 12.52% (control sCv) to 71.12% (sCv). Cv extracts exhibited greater activity against MDA-MB-453 cells, while sCv extracts from US pretreatment demonstrated the strongest effect on HeLa cells. The LCA indicated reduced environmental impacts of the pretreatment-enhanced processes up to 65% compared to the control. A scenario analysis was presented to show further possible impact reduction by recirculating the CO2 solvent and substituting the energy source. These findings provide valuable insights into sustainable and scalable green processes for recovering microalgal bioactive components.
KW - Chlorella vulgaris
KW - Cytotoxic activity
KW - Life cycle assessment
KW - Pretreatment
KW - Supercritical
KW - UHPLC-ESI-HRMS
U2 - 10.1016/j.jclepro.2025.144823
DO - 10.1016/j.jclepro.2025.144823
M3 - Article
AN - SCOPUS:85216231016
SN - 0959-6526
VL - 491
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
M1 - 144823
ER -