TY - JOUR
T1 - Classification of forest management approaches: a new conceptual framework and its applicability to European forestry
AU - Duncker, P.S.
AU - Barreiro, S.M.
AU - Hengeveld, G.M.
AU - Lind, T.
AU - Mason, B.
AU - Ambrozy, S.
AU - Spiecker, H.
PY - 2012
Y1 - 2012
N2 - The choice between different forest management practices is a crucial step in short, medium, and long-term decision making in forestry and when setting up measures to support a regional or national forest policy. Some conditions such as biogeographically determined site factors, exposure to major disturbances, and societal demands are predetermined, whereas operational processes such as species selection, site preparation, planting, tending, or thinning can be altered by management. In principle, the concept of a forest management approach provides a framework for decision making, including a range of silvicultural operations that influence the development of a stand or group of trees over time. These operations vary among silvicultural systems and can be formulated as a set of basic principles. Consequently, forest management approaches are essentially defined by coherent sets of forest operation processes at a stand level.
Five ideal forest management approaches (FMAs) representing a gradient of management intensity are described using specific sets of basic principles that enable comparison across European forests. Each approach is illustrated by a regional European case study. The observed regional variations resulting from changing species composition, stand density, age structure, stand edges, and site conditions can be interpreted using the FMA framework.
Despite being arranged along an intensity gradient, the forest management approaches are not considered to be mutually exclusive, as the range of options allows for greater freedom in selecting potential silvicultural operations. As derived goods and services are clearly affected, the five forest management approaches have implications for sustainability. Thus, management objectives can influence the balance between the economic, ecological, and social dimensions of sustainability. The utility of this framework is further demonstrated through the different contributions to this special issue.
AB - The choice between different forest management practices is a crucial step in short, medium, and long-term decision making in forestry and when setting up measures to support a regional or national forest policy. Some conditions such as biogeographically determined site factors, exposure to major disturbances, and societal demands are predetermined, whereas operational processes such as species selection, site preparation, planting, tending, or thinning can be altered by management. In principle, the concept of a forest management approach provides a framework for decision making, including a range of silvicultural operations that influence the development of a stand or group of trees over time. These operations vary among silvicultural systems and can be formulated as a set of basic principles. Consequently, forest management approaches are essentially defined by coherent sets of forest operation processes at a stand level.
Five ideal forest management approaches (FMAs) representing a gradient of management intensity are described using specific sets of basic principles that enable comparison across European forests. Each approach is illustrated by a regional European case study. The observed regional variations resulting from changing species composition, stand density, age structure, stand edges, and site conditions can be interpreted using the FMA framework.
Despite being arranged along an intensity gradient, the forest management approaches are not considered to be mutually exclusive, as the range of options allows for greater freedom in selecting potential silvicultural operations. As derived goods and services are clearly affected, the five forest management approaches have implications for sustainability. Thus, management objectives can influence the balance between the economic, ecological, and social dimensions of sustainability. The utility of this framework is further demonstrated through the different contributions to this special issue.
KW - biodiversity
KW - timber
U2 - 10.5751/ES-05262-170451
DO - 10.5751/ES-05262-170451
M3 - Article
SN - 1708-3087
VL - 17
JO - Ecology and Society
JF - Ecology and Society
IS - 4
M1 - 51
ER -