TY - JOUR
T1 - ChickenNet - an end-to-end approach for plumage condition assessment of laying hens in commercial farms using computer vision
AU - Lamping, Christian
AU - Derks, Marjolein
AU - Groot Koerkamp, Peter
AU - Kootstra, Gert
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/3
Y1 - 2022/3
N2 - Regular plumage condition assessment in laying hens is essential to monitor the hens’ welfare status and to detect the occurrence of feather pecking activities. However, in commercial farms this is a labor-intensive, manual task. This study proposes a novel approach for automated plumage condition assessment using computer vision and deep learning. It presents ChickenNet, an end-to-end convolutional neural network that detects hens and simultaneously predicts a plumage condition score for each detected hen. To investigate the effect of input image characteristics, the method was evaluated using images with and without depth information in resolutions of 384 × 384, 512 × 512, 896 × 896 and 1216 × 1216 pixels. Further, to determine the impact of subjective human annotations, plumage condition predictions were compared to manual assessments of one observer and to matching annotations of two observers. Among all tested settings, performance metrics based on matching manual annotations of two observers were equal or better than the ones based on annotations of a single observer. The best result obtained among all tested configurations was a mean average precision (mAP) of 98.02% for hen detection while 91.83% of the plumage condition scores were predicted correctly. Moreover, it was revealed that performance of hen detection and plumage condition assessment of ChickenNet was not generally enhanced by depth information. Increasing image resolutions improved plumage assessment up to a resolution of 896 × 896 pixels, while high detection accuracies (mAP > 0.96) could already be achieved using lower resolutions. The results indicate that ChickenNet provides a sufficient basis for automated monitoring of plumage conditions in commercial laying hen farms.
AB - Regular plumage condition assessment in laying hens is essential to monitor the hens’ welfare status and to detect the occurrence of feather pecking activities. However, in commercial farms this is a labor-intensive, manual task. This study proposes a novel approach for automated plumage condition assessment using computer vision and deep learning. It presents ChickenNet, an end-to-end convolutional neural network that detects hens and simultaneously predicts a plumage condition score for each detected hen. To investigate the effect of input image characteristics, the method was evaluated using images with and without depth information in resolutions of 384 × 384, 512 × 512, 896 × 896 and 1216 × 1216 pixels. Further, to determine the impact of subjective human annotations, plumage condition predictions were compared to manual assessments of one observer and to matching annotations of two observers. Among all tested settings, performance metrics based on matching manual annotations of two observers were equal or better than the ones based on annotations of a single observer. The best result obtained among all tested configurations was a mean average precision (mAP) of 98.02% for hen detection while 91.83% of the plumage condition scores were predicted correctly. Moreover, it was revealed that performance of hen detection and plumage condition assessment of ChickenNet was not generally enhanced by depth information. Increasing image resolutions improved plumage assessment up to a resolution of 896 × 896 pixels, while high detection accuracies (mAP > 0.96) could already be achieved using lower resolutions. The results indicate that ChickenNet provides a sufficient basis for automated monitoring of plumage conditions in commercial laying hen farms.
KW - Computer vision
KW - Deep learning
KW - Instance segmentation
KW - Plumage assessment
KW - Poultry
U2 - 10.1016/j.compag.2022.106695
DO - 10.1016/j.compag.2022.106695
M3 - Article
AN - SCOPUS:85123988350
SN - 0168-1699
VL - 194
JO - Computers and Electronics in Agriculture
JF - Computers and Electronics in Agriculture
M1 - 106695
ER -