TY - JOUR
T1 - Characterization of air velocities near greenhouse internal mobile screens using 3D sonic anemometry
AU - Baeza Romero, E.J.
AU - Hemming, S.
AU - van Breuge, A.J.
AU - Mohammadkhani, V.
AU - Jansen, H.
AU - Kempkes, F.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - In Dutch greenhouses, different screen types are used for different purposes (shading, energy saving, black-out, light emission, etc.). In order to quantify the energy and mass transfers through screens, characterization of air permeability through the screens is required. In the case of energy-saving screens, it is an essential parameter to estimate the energy saving of each screen. Air permeability can be measured under defined conditions in a laboratory. In order to select the appropriate equipment for air velocity measurements, the air velocity vector near screens in a practical situation in a greenhouse needs to be identified by measurements. Sonic anemometry techniques have been used extensively in different types of greenhouses: a) to study natural ventilation, with and without insect screens, and in different positions; b) to study airflow patterns in greenhouses with mechanical ventilation/pad and fan systems; c) to study airflow patterns induced by different types of heating systems, and d) for the estimation of crop evapotranspiration (i.e., eddy covariance). However, to the best of our knowledge, no research has been carried out to study the airflow near different types of screens in a greenhouse. Many Dutch growers are increasingly using various types of fans with different positions in the greenhouse for dehumidification and improved climate uniformity purposes. The effect of such fans on the air velocity near screens, and therefore the effect on energy and mass transfer, is unknown. For this purpose, air velocities near different types of screens in commercial greenhouses were measured using ultrasonic 3D anemometers. The results show that, in the absence of fans, air velocity near the screens is affected by vent opening. With vents closed, air velocities are hardly ever above 0.2 m s-1. Therefore, a simple air-suction device can be used to characterize permeability of screens at a very low Reynolds range.
AB - In Dutch greenhouses, different screen types are used for different purposes (shading, energy saving, black-out, light emission, etc.). In order to quantify the energy and mass transfers through screens, characterization of air permeability through the screens is required. In the case of energy-saving screens, it is an essential parameter to estimate the energy saving of each screen. Air permeability can be measured under defined conditions in a laboratory. In order to select the appropriate equipment for air velocity measurements, the air velocity vector near screens in a practical situation in a greenhouse needs to be identified by measurements. Sonic anemometry techniques have been used extensively in different types of greenhouses: a) to study natural ventilation, with and without insect screens, and in different positions; b) to study airflow patterns in greenhouses with mechanical ventilation/pad and fan systems; c) to study airflow patterns induced by different types of heating systems, and d) for the estimation of crop evapotranspiration (i.e., eddy covariance). However, to the best of our knowledge, no research has been carried out to study the airflow near different types of screens in a greenhouse. Many Dutch growers are increasingly using various types of fans with different positions in the greenhouse for dehumidification and improved climate uniformity purposes. The effect of such fans on the air velocity near screens, and therefore the effect on energy and mass transfer, is unknown. For this purpose, air velocities near different types of screens in commercial greenhouses were measured using ultrasonic 3D anemometers. The results show that, in the absence of fans, air velocity near the screens is affected by vent opening. With vents closed, air velocities are hardly ever above 0.2 m s-1. Therefore, a simple air-suction device can be used to characterize permeability of screens at a very low Reynolds range.
KW - Air permeability
KW - Fans
KW - Greenhouse screens
KW - Vents
KW - Wind
U2 - 10.17660/ActaHortic.2018.1227.19
DO - 10.17660/ActaHortic.2018.1227.19
M3 - Article
AN - SCOPUS:85059990965
SN - 0567-7572
VL - 1227
SP - 159
EP - 164
JO - Acta Horticulturae
JF - Acta Horticulturae
ER -