TY - JOUR
T1 - Changing a single amino acid residue switches processive and non-processive behavior of Aspergillus niger endopolygalacturonase I and II
AU - Pages, S.
AU - Kester, H.C.M.
AU - Visser, J.
AU - Benen, J.A.E.
PY - 2001
Y1 - 2001
N2 - Processivity, also known as multiple attack on a single chain, is a feature commonly encountered only in enzymes in which the substrate binds in a tunnel. However, of the seven Aspergillus niger endopolygalacturonases, which have an open substrate binding cleft, four enzymes show processive behavior, whereas the other endopolygalacturonases are randomly acting enzymes. In a previous study (Benen, J.A.E., Kester, H.C.M., and Visser, J. (1999) Eur. J. Biochem. 259, 577-585) we proposed that the high affinity for the substrate of subsite 5 of processive endopolygalacturonase I constitutes the origin of the multiple attack behavior. Based on primary sequence alignments of A. niger endopolygalacturonases and three-dimensional structure analysis of endopolygalacturonase II, an arginine residue was identified in the processive enzymes at a position commensurate with subsite 5, whereas a serine residue was present at this position in the non-processive enzymes. In endopolygalacturonase I mutation R95S was introduced, and in endopolygalacturonase II mutation S91R was introduced. Product progression analysis on polymer substrate and bond cleavage frequency studies using oligogalacturonides of defined chain length for the mutant enzymes revealed that processive/non-processive behavior is indeed interchangeable by one single amino acid substitution at subsite 5, ArgSer or SerArg
AB - Processivity, also known as multiple attack on a single chain, is a feature commonly encountered only in enzymes in which the substrate binds in a tunnel. However, of the seven Aspergillus niger endopolygalacturonases, which have an open substrate binding cleft, four enzymes show processive behavior, whereas the other endopolygalacturonases are randomly acting enzymes. In a previous study (Benen, J.A.E., Kester, H.C.M., and Visser, J. (1999) Eur. J. Biochem. 259, 577-585) we proposed that the high affinity for the substrate of subsite 5 of processive endopolygalacturonase I constitutes the origin of the multiple attack behavior. Based on primary sequence alignments of A. niger endopolygalacturonases and three-dimensional structure analysis of endopolygalacturonase II, an arginine residue was identified in the processive enzymes at a position commensurate with subsite 5, whereas a serine residue was present at this position in the non-processive enzymes. In endopolygalacturonase I mutation R95S was introduced, and in endopolygalacturonase II mutation S91R was introduced. Product progression analysis on polymer substrate and bond cleavage frequency studies using oligogalacturonides of defined chain length for the mutant enzymes revealed that processive/non-processive behavior is indeed interchangeable by one single amino acid substitution at subsite 5, ArgSer or SerArg
U2 - 10.1074/jbc.M105770200
DO - 10.1074/jbc.M105770200
M3 - Article
VL - 276
SP - 33652
EP - 33656
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
ER -