Cereal type and combined xylanase/glucanase supplementation influence the cecal microbiota composition in broilers

Dimitrios Kouzounis, Jannigje G. Kers, Natalia Soares, Hauke Smidt, Mirjam A. Kabel, Henk A. Schols*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)


Dietary fiber-degrading enzyme supplementation in broilers aims at off-setting the anti-nutritive effect of non-starch polysaccharides and at promoting broiler health. Recently, we demonstrated that xylanase/glucanase addition in wheat-based diet improved nutrient digestibility, arabinoxylan fermentability and broiler growth. Conversely, maize arabinoxylan was found to be recalcitrant to xylanase action. These findings suggested that enzyme-mediated improvement of nutrient digestion and carbohydrate fermentation depended on the cereal type present in the diet, and may have contributed to broiler growth. Hence, we aimed at further investigating the link between dietary enzymes and carbohydrate fermentation in broilers, by studying the impact of enzyme supplementation in cereal-based diets, to the microbial communities in the ileum and ceca of broilers. For that purpose, 96 one-day-old male broilers were randomly reared in two pens and received either wheat-based or maize-based starter and grower diets. At d 20, the broilers were randomly assigned to one out of four dietary treatments. The broilers received for 8 d the wheat-based or maize-based finisher diet as such (Control treatments; WC, MC) or supplemented with a xylanase/glucanase combination (Enzyme treatments; WE, ME). At d 28, samples from the digestive tract were collected, and the ileal and cecal microbiota composition was determined by 16S ribosomal RNA gene amplicon sequencing. A similar phylogenetic (alpha) diversity was observed among the four treatments, both in the ileal and the cecal samples. Furthermore, a similar microbial composition in the ileum (beta diversity) was observed, with lactobacilli being the predominant community for all treatments. In contrast, both cereal type and enzyme supplementation were found to influence cecal communities. The type of cereal (i.e., wheat or maize) explained 47% of the total variation in microbial composition in the ceca. Further stratifying the analysis per cereal type revealed differences in microbiota composition between WC and WE, but not between MC and ME. Furthermore, the prevalence of beneficial genera, such as Faecalibacterium and Blautia, in the ceca of broilers fed wheat-based diets coincided with arabinoxylan accumulation. These findings indicated that fermentable arabinoxylan and arabinoxylo-oligosaccharides released by dietary xylanase may play an important role in bacterial metabolism.

Original languageEnglish
Article number51
JournalJournal of Animal Science and Biotechnology
Issue number1
Publication statusPublished - 4 May 2022


  • 16S rRNA
  • Arabinoxylo-oligosaccharides
  • Broiler gut microbiota
  • Cereal non-starch polysaccharides
  • Feed enzymes
  • Fiber fermentation
  • Prebiotics


Dive into the research topics of 'Cereal type and combined xylanase/glucanase supplementation influence the cecal microbiota composition in broilers'. Together they form a unique fingerprint.

Cite this