Abstract
To identify genes required for the hypersensitive response (HR), we performed expression profiling of tomato plants mounting a synchronized HR, followed by functional analysis of differentially expressed genes. By cDNA-AFLP analysis, the expression profile of tomato plants containing both the Cf-4 resistance gene against Cladosporium fulvum and the matching Avr4 avirulence gene of this fungus was compared with that of control plants. About 1% of the transcript-derived fragments (442 out of 50,000) were derived from a differentially expressed gene. Based on their sequence and expression, 192 fragments, referred to as Avr4-responsive tomato (ART) fragments, were selected for VIGS (virus-induced gene silencing) in Cf-4-transgenic Nicotiana benthamiana. Inoculated plants were analyzed for compromised HR by agroinfiltration of either the C. fulvum Avr4 gene or the Inf1 gene of Phytophthora infestans, which invokes a HR in wild-type N. benthamiana. VIGS using 15 of the ART fragments resulted in a compromised HR, whereas VIGS with fragments of ART genes encoding HSP90, a nuclear GTPase, an L19 ribosomal protein, and most interestingly, a nucleotide binding-leucine rich repeat (NB-LRR)-type protein severely suppressed the HR induced both by Avr4 and Inf1. Requirement of an NB-LRR protein (designated NRC1, for NB-LRR protein required for HR-associated cell death 1) for Cf resistance protein function as well as Inf1-mediated HR suggests a convergence of signaling pathways and supports the recent observation that NB-LRR proteins play a role in signal transduction cascades downstream of resistance proteins
Original language | English |
---|---|
Pages (from-to) | 567-576 |
Journal | Molecular Plant-Microbe Interactions |
Volume | 19 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2006 |
Keywords
- plant-pathogen interactions
- programmed cell-death
- cladosporium-fulvum
- disease-resistance
- nicotiana-benthamiana
- molecular analysis
- defense responses
- avirulence gene
- cf-4 locus
- protein