Abstract
The surface complexation modeling of metal adsorption to birnessites is in its infancy compared to the charge-distribution multi-site ion complexation (CD-MUSIC) models for iron/aluminum (hydr)oxides. Therefore, using X-ray diffraction with Rietveld refinement to obtain the reactive sites and their densities, a CD-MUSIC model combined with a Stern-Gouy-Chapman electrical double layer (EDL) model for the external surface and a Donnan model for the interlayer surface is developed for birnessites with different Mn average oxidation state (MnAOS). Proton affinity constants and the charge distributions of Pb surface complexes were calculated a priory. By fitting Pb adsorption data to the model the obtained equilibrium constants (logKPb) of Pb complexes were 6.9-10.9 for the double-corner-sharing and double-edge-sharing Pb2+ complexes on the edge sites and 2.2-6.5 for the triple-corner-sharing Pb2+ complex on the vacancies. The larger logKPb value was obtained for higher MnAOS. Speciation calculations showed that with increasing MnAOS from 3.67 to 3.92 the interlayer surface contribution to the total Pb2+ adsorption increased from 43.2% to 48.6%, and the vacancy contribution increased from 43.9% to 54.7%. The vacancy contribution from interlayer surface was predominant. The present CD-MUSIC-EDL model contributes to understand better the difference in metal adsorption mechanism between birnessite and iron/aluminum (hydr)oxides.
Original language | English |
---|---|
Pages (from-to) | 10522–10531 |
Journal | Environmental Science and Technology |
Volume | 52 |
Issue number | 18 |
Early online date | 6 Aug 2018 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- adsorption
- Birnessite
- CD-MUSIC Modeling
- Electrical double layer model
- External surface
- Interlayer space
- Manganese oxide
- Mn average oxidation state
- Pb
- Rietveld refinement