TY - JOUR
T1 - Calcium promotes formation of large colonies of the cyanobacterium Microcystis by enhancing cell-adhesion
AU - Chen, Huaimin
AU - Lürling, Miquel
PY - 2020/2
Y1 - 2020/2
N2 - Large Microcystis colonies can lead to the rapid formation of surface accumulations, which are a globally significant environmental issue. Laboratory studies have shown that Ca2+ can quickly promote non-classical Microcystis colony formation via cell-adhesion, but our knowledge of the changes in the morphology of these colonies during subsequent long-term culture with Ca2+ is limited. In this study, a 72-day cultivation experiment was conducted to determine the long-term effects of Ca2+ on Microcystis colony formation. Laboratory results indicate that Ca2+ causes Microcystis to rapidly aggregate and form a colony through cell adhesion, then colony formation by cell-adhesion lost dominance, owing to the decrease in Ca2+ concentrations caused by precipitation/complexation. Although the initial colony morphology by cell adhesion is sparse, the newly divided cells, without separating from the mother cells, constantly fill the gaps in the original colony at Ca2+ concentrations >40 mg L−1 for a long time, which creates colonies on day 72 with a morphology similar to that of M. ichthyoblabe in Lake Taihu. If the Ca2+ levels in Lake Taihu continue to increase, Microcystis growth rate will decrease only slightly, while the colony proportion of total biovolume and biomass will increase. Moreover, higher Ca2+ concentrations do not affect microcystin content, but promote the content of bound extracellular polysaccharides (bEPS), enabling formation of larger colonies, which may promote Microcystis surface accumulation.
AB - Large Microcystis colonies can lead to the rapid formation of surface accumulations, which are a globally significant environmental issue. Laboratory studies have shown that Ca2+ can quickly promote non-classical Microcystis colony formation via cell-adhesion, but our knowledge of the changes in the morphology of these colonies during subsequent long-term culture with Ca2+ is limited. In this study, a 72-day cultivation experiment was conducted to determine the long-term effects of Ca2+ on Microcystis colony formation. Laboratory results indicate that Ca2+ causes Microcystis to rapidly aggregate and form a colony through cell adhesion, then colony formation by cell-adhesion lost dominance, owing to the decrease in Ca2+ concentrations caused by precipitation/complexation. Although the initial colony morphology by cell adhesion is sparse, the newly divided cells, without separating from the mother cells, constantly fill the gaps in the original colony at Ca2+ concentrations >40 mg L−1 for a long time, which creates colonies on day 72 with a morphology similar to that of M. ichthyoblabe in Lake Taihu. If the Ca2+ levels in Lake Taihu continue to increase, Microcystis growth rate will decrease only slightly, while the colony proportion of total biovolume and biomass will increase. Moreover, higher Ca2+ concentrations do not affect microcystin content, but promote the content of bound extracellular polysaccharides (bEPS), enabling formation of larger colonies, which may promote Microcystis surface accumulation.
KW - Ca
KW - Cell adhesion
KW - Colony formation
KW - Colony morphology
KW - Microcystis
U2 - 10.1016/j.hal.2020.101768
DO - 10.1016/j.hal.2020.101768
M3 - Article
AN - SCOPUS:85078839036
SN - 1568-9883
VL - 92
JO - Harmful Algae
JF - Harmful Algae
M1 - 101768
ER -