Black soldier fly reared on pig manure: Bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions

Research output: Contribution to journalArticleAcademicpeer-review

55 Citations (Scopus)

Abstract

There is an increased interest for using insects, such as the black soldier fly, to treat surplus manure and upcycle nutrients into the food system. Understanding the influence that BSFL have on nutrient flows and nutrient losses during manure bioconversion is key for sustainability assessments. Here we quantified and compared nutrient balances, nutrient levels in residual materials and emissions of greenhouse gases and ammonia between manure incubated with black soldier fly larvae (BSFL) and manure without BSFL, during a 9-day experimental period. We obtained high analytical recoveries, ranging between 95 and 103%. We found that of the pig manure supplied, 12.5% of dry matter (DM), 13% of carbon, 25% of nitrogen, 14% of energy, 8.5% of phosphorus and 9% of potassium was stored in BSFL body mass. When BSFL were present, more carbon dioxide (247 vs 148 g/kg of DM manure) and ammonia-nitrogen (7 vs 4.5 g/kg of DM manure) emitted than when larvae were absent. Methane, which was the main contributor to greenhouse gas emissions, was produced at the same levels (1.3 vs 1.1 g/kg of DM manure) in both treatments, indicating the main role that manure microbial methane emissions play. Nitrous oxide was negligible in both treatments. The uptake of nutrients by the larvae and the higher carbon dioxide and ammonia emissions modified the nutrient composition of the residual material substantially relative to the fresh manure. Our study provides a reliable basis to quantify the environmental impact of using BSFL in future life cycle assessments.

Original languageEnglish
Pages (from-to)674-683
Number of pages10
JournalWaste Management
Volume126
DOIs
Publication statusPublished - 1 May 2021

Keywords

  • Ammonia
  • Bioconversion
  • Black soldier fly
  • Greenhouse gas emissions
  • Hermetia illucens
  • Pig manure

Fingerprint

Dive into the research topics of 'Black soldier fly reared on pig manure: Bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions'. Together they form a unique fingerprint.

Cite this